

 QUANTUM SERIES

TM

QUANTUM PAGE PVT. LTD.
Ghaziabad New Delhi

For
B.Tech Students of Third Year

of All Engineering Colleges Affiliated to
Dr. A.P.J. Abdul Kalam Technical University,

Uttar Pradesh, Lucknow
(Formerly Uttar Pradesh Technical University)

Compiler Design

By
 Nupur Tripathi

1

PUBLISHED BY : Apram Singh
Quantum Publications
(A Unit of Quantum Page Pvt. Ltd.)
Plot No. 59/2/7, Site - 4, Industrial Area,
Sahibabad, Ghaziabad-201 010

Phone : 0120 - 4160479
Email : pagequantum@gmail.com Website: www.quantumpage.co.in
Delhi Office : 1/6590, East Rohtas Nagar, Shahdara, Delhi-110032

© ALL RIGHTS RESERVED

No part of this publication may be reproduced or transmitted,
in any form or by any means, without permission.

Information contained in this work is derived from sources
believed to be reliable. Every effort has been made to ensure
accuracy, however neither the publisher nor the authors
guarantee the accuracy or completeness of any information
published herein, and neither the publisher nor the authors
shall be responsible for any errors, omissions, or damages
arising out of use of this information.

Compiler Design (CS/IT : Sem-5)
1st Edition : 2010-11
2nd Edition : 2011-12
3rd Edition : 2012-13
4th Edition : 2013-14
5th Edition : 2014-15
6th Edition : 2015-16
7th Edition : 2016-17
8th Edition : 2017-18
9th Edition : 2018-19
10th Edition : 2019-20
11th Edition : 2020-21 (Thoroughly Revised Edition)

Price: Rs. 80/- only

Printed Version : e-Book.

2

mailto:pagequantum@gmail.com
http://www.quantumpage.co.in

UNIT-1 : INTRODUCTION TO COMPILER (1–1 C to 1–31 C)
Phases and passes, Bootstrapping, Finite state machines and regular
expressions and their applications to lexical analysis, Optimization
of DFA-Based Pattern Matchers implementation of lexical analyzers,
lexical-analyzer generator, LEX compiler, Formal grammars and
their application to syntax analysis, BNF notation, ambiguity, YACC.
The syntactic specification of programming languages: Context free
grammars, derivation and parse trees, capabilities of CFG.

UNIT-2 : BASIC PARSING TECHNIQUES (2–1 C to 2–38 C)
Parsers, Shift reduce parsing, operator precedence parsing, top down
parsing, predictive parsers Automatic Construction of efficient
Parsers: LR parsers, the canonical Collection of LR(0) items,
constructing SLR parsing tables, constructing Canonical LR parsing
tables, Constructing LALR parsing tables, using ambiguous
grammars, an automatic parser generator, implementation of LR
parsing tables.

UNIT-3 : SYNTAX-DIRECTED TRANSLATION (3–1 C to 3–27 C)
Syntax-directed Translation schemes, Implementation of Syntax-
directed Translators, Intermediate code, postfix notation, Parse trees
& syntax trees, three address code, quadruple & triples, translation
of assignment statements, Boolean expressions, statements that alter
the flow of control, postfix translation, translation with a top down
parser. More about translation: Array references in arithmetic
expressions, procedures call, declarations and case statements.

UNIT-4 : SYMBOL TABLES (4–1 C to 4–22 C)
Data structure for symbols tables, representing scope information.
Run-Time Administration: Implementation of simple stack
allocation scheme, storage allocation in block structured language.
Error Detection & Recovery: Lexical Phase errors, syntactic phase
errors semantic errors.

UNIT-5 : CODE GENERATION (5–1 C to 5–26 C)
Design Issues, the Target Language. Addresses in the Target Code,
Basic Blocks and Flow Graphs, Optimization of Basic Blocks, Code
Generator. Code optimization: Machine-Independent Optimizations,
Loop optimization, DAG representation of basic blocks, value
numbers and algebraic laws, Global Data-Flow analysis.

SHORT QUESTIONS (SQ-1 C to SQ-16 C)

SOLVED PAPERS (2015-16 TO 2018-19) (SP-1 C to SP-13 C)

3

CONTENTS
KCS-502/KIT-052 : COMPILER DESIGN

Compiler Design (KCS-502)
Course Outcome (CO) Bloom’s Knowledge Level (KL)

At the end of course , the student will be able to:

CO 1
Acquire knowledge of different phases and passes of the compiler and also able to use the
compiler tools like LEX, YACC, etc. Students will also be able to design different types of
compiler tools to meet the requirements of the realistic constraints of compilers.

K3, K6

CO 2
Understand the parser and its types i.e. Top-Down and Bottom-up parsers and construction of
LL, SLR, CLR, and LALR parsing table.

K2, K6

CO 3 Implement the compiler using syntax-directed translation method and get knowledge about the
synthesized and inherited attributes.

K4, K5

CO 4 Acquire knowledge about run time data structure like symbol table organization and different
techniques used in that.

K2, K3

CO 5
Understand the target machine’s run time environment, its instruction set for code generation
and techniques used for code optimization.

K2, K4

DETAILED SYLLABUS 3-0-0
Unit Topic Proposed

Lecture

I

Introduction to Compiler: Phases and passes, Bootstrapping, Finite state machines and regular
expressions and their applications to lexical analysis, Optimization of DFA-Based Pattern Matchers
implementation of lexical analyzers, lexical-analyzer generator, LEX compiler, Formal grammars
and their application to syntax analysis, BNF notation, ambiguity, YACC. The syntactic
specification of programming languages: Context free grammars, derivation and parse trees,
capabilities of CFG.

08

II

Basic Parsing Techniques: Parsers, Shift reduce parsing, operator precedence parsing, top down
parsing, predictive parsers Automatic Construction of efficient Parsers: LR parsers, the canonical
Collection of LR(0) items, constructing SLR parsing tables, constructing Canonical LR parsing
tables, Constructing LALR parsing tables, using ambiguous grammars, an automatic parser
generator, implementation of LR parsing tables.

08

III

Syntax-directed Translation: Syntax-directed Translation schemes, Implementation of Syntax-
directed Translators, Intermediate code, postfix notation, Parse trees & syntax trees, three address
code, quadruple & triples, translation of assignment statements, Boolean expressions, statements
that alter the flow of control, postfix translation, translation with a top down parser. More about
translation: Array references in arithmetic expressions, procedures call, declarations and case
statements.

08

IV
Symbol Tables: Data structure for symbols tables, representing scope information. Run-Time
Administration: Implementation of simple stack allocation scheme, storage allocation in block
structured language. Error Detection & Recovery: Lexical Phase errors, syntactic phase errors
semantic errors.

08

V
 Code Generation: Design Issues, the Target Language. Addresses in the Target Code, Basic
Blocks and Flow Graphs, Optimization of Basic Blocks, Code Generator. Code optimization:
Machine-Independent Optimizations, Loop optimization, DAG representation of basic blocks,
value numbers and algebraic laws, Global Data-Flow analysis.

08

Text books:
1. K. Muneeswaran,Compiler Design,First Edition,Oxford University Press.
2. J.P. Bennet, “Introduction to Compiler Techniques”, Second Edition, Tata McGraw-Hill,2003.
3. Henk Alblas and Albert Nymeyer, “Practice and Principles of Compiler Building with C”, PHI, 2001.
 4. Aho, Sethi & Ullman, "Compilers: Principles, Techniques and Tools”, Pearson Education
5. V Raghvan, “ Principles of Compiler Design”, TMH
6. Kenneth Louden,” Compiler Construction”, Cengage Learning.
7. Charles Fischer and Ricard LeBlanc,” Crafting a Compiler with C”, Pearson Education

1–1 C (CS/IT-Sem-5)Compiler Design

Introduction to
Compiler

1
UNIT

CONTENTS
Part-1 : Introduction to Compiler : 1–2C to 1–6C

Phases and Passes

Part-2 : Bootstrapping .. 1–6C to 1–7C

Part-3 : Finite State Machines and 1–8C to 1–17C
Regular Expressions and
their Application to Lexical
Analysis, Optimization of
DFA Based Pattern Matchers

Part-4 : Implementation of 1–17C to 1–22C
Lexical Analyzers,
Lexical Analyzer Generator,
LEX Compiler

Part-5 : Formal Grammars and 1–22C to 1–25C
their Application to Syntax
Analysis, BNF Notation

Part-6 : Ambiguity, YACC 1–25C to 1–27C

Part-7 : The Syntactic Specification 1–27C to 1–30C
of Programming Languages :
Context Free Grammar (CFG),
Derivation and Parse Trees,
Capabilities of CFG

Introduction to Compiler 1–2 C (CS/IT-Sem-5)

PART-1

Introduction to Compiler, Phases and Passes.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 1.1. Explain in detail the process of compilation. Illustrate

the output of each phase of compilation of the input

“a = (b + c)*(b + c)* 2”. AKTU 2016-17, Marks 10

Answer
A compiler contains 6 phases which are as follows :

i. Phase 1 (Lexical analyzer) :
a. The lexical analyzer is also called scanner.

b. The lexical analyzer phase takes source program as an input and
separates characters of source language into groups of strings
called token.

c. These tokens may be keywords identifiers, operator symbols and
punctuation symbols.

ii. Phase 2 (Syntax analyzer) :
a. The syntax analyzer phase is also called parsing phase.

b. The syntax analyzer groups tokens together into syntactic
structures.

c. The output of this phase is parse tree.

iii. Phase 3 (Semantic analyzer) :
a. The semantic analyzer phase checks the source program for

semantic errors and gathers type information for subsequent code
generation phase.

b. It uses parse tree and symbol table to check whether the given
program is semantically consistent with language definition.

c. The output of this phase is annotated syntax tree.

iv. Phase 4 (Intermediate code generation) :
a. The intermediate code generation takes syntax tree as an input

from semantic phase and generates intermediate code.

b. It generates variety of code such as three address code, quadruple,
triple.

1–3 C (CS/IT-Sem-5)Compiler Design

Symbol table
manager Error handler

Source program

Lexical analyzer

Syntax analyzer

Semantic analyzer

Intermediate code
generator

Code optimizer

Code generator

Target program

Fig. 1.1.1.

v. Phase 5 (Code optimization) : This phase is designed to improve the
intermediate code so that the ultimate object program runs faster and
takes less space.

vi. Phase 6 (Code generation) :

a. It is the final phase for compiler.

b. It generates the assembly code as target language.

c. In this phase, the address in the binary code is translated from
logical address.

Symbol table / table management : A symbol table is a data structure
containing a record that allows us to find the record for each identifier
quickly and to store or retrieve data from that record quickly.

Error handler : The error handler is invoked when a flaw in the source
program is detected.

Compilation of “a = (b + c)*(b + c)*2” :

Introduction to Compiler 1–4 C (CS/IT-Sem-5)

Lexical analyzer

Syntax analyzer

=

+

id1

id2

*

*

+

id3

2

Semantic analyzer

=

+

id1

id2

*

*

+

id3

int_to_real

2

a b c b c = (+) * (+)* 2

Input processing in compiler Output

Token stream

Parse tree

Annotated syntax tree

id id id id id1 2 2 3 = (+) * (+) * 23

Intermediate code
generation

t b c
t t t
t
t t t
id t

1

2 1 1

3

4 2 3

1 4

= +
= *
= int_to_real (2)
= *
 =

Intermediate code

1–5 C (CS/IT-Sem-5)Compiler Design

Machine code

Optimized code

Machine code

Code optimization

t b c
t t t
id t

1

2 1 1

1 2

= +
= *

= * 2

MOV ,
ADD , ,
MUL , R ,
MUL , , # 2.0
ST ,

R b
R R c
R R
R R

id R

1

1 1

2 1 1

2 1

1 2

Que 1.2. What are the types of passes in compiler ?

Answer
Types of passes :
1. Single-pass compiler :

a. In a single-pass compiler, when a line source is processed it is
scanned and the tokens are extracted.

b. Then the syntax of the line is analyzed and the tree structure,
some tables containing information about each token are built.

2. Multi-pass compiler : In multi-pass compiler, it scan the input source
once and produces first modified form, then scans the modified form
and produce a second modified form and so on, until the object form is
produced.

Que 1.3. Discuss the role of compiler writing tools. Describe

various compiler writing tools.

Answer
Role of compiler writing tools :
1. Compiler writing tools are used for automatic design of compiler

component.

2. Every tool uses specialized language.

3. Writing tools are used as debuggers, version manager.

Introduction to Compiler 1–6 C (CS/IT-Sem-5)

Various compiler construction/writing tools are :
1. Parser generator : The procedure produces syntax analyzer, normally

from input that is based on context free grammar.

2. Scanner generator : It automatically generates lexical analyzer,
normally from specification based on regular expressions.

3. Syntax directed translation engine :
a. It produces collection of routines that are used in parse tree.

b. These translations are associated with each node of parse tree,
and each translation is defined in terms of translations at its
neighbour nodes in the tree.

4. Automatic code generator : These tools take a collection of rules
that define translation of each operation of the intermediate language
into the machine language for target machine.

5. Data flow engine : The data flow engine is use to optimize the code
involved and gathers the information about how values are transmitted
from one part of the program to another.

PART-2

Bootstrapping.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 1.4. Define bootstrapping with the help of an example.

OR
What is a cross compiler ? How is bootstrapping of a compiler done
to a second machine ?

Answer
Cross compiler : A cross compiler is a compiler capable of creating executable
code for a platform other than the one on which the compiler is running.

Bootstrapping :
1. Bootstrapping is the process of writing a compiler (or assembler) in the

source programming language that it intends to compile.

2. Bootstrapping leads to a self-hosting compiler.

3. An initial minimal core version of the compiler is generated in a different
language.

1–7 C (CS/IT-Sem-5)Compiler Design

4. A compiler is characterized by three languages :

a. Source language (S)

b. Target language (T)

c. Implementation language (I)

5. S T
IC represents a compiler for Source S, Target T, implemented in I.

The T-diagram shown in Fig. 1.4.1 is also used to depict the same
compiler :

S T

I

Fig. 1.4.1.

6. To create a new language, L, for machine A :

a. Create S A
AC a compiler for a subset, S, of the desired language, L,

using language A, which runs on machine A. (Language A may be
assembly language.)

S A

A

Fig. 1.4.2.

b. Create L A
SC , a compiler for language L written in a subset of L.

L A

S

Fig. 1.4.3.

c. Compile L A
SC using S A

AC to obtain L A
AC , a compiler for language

L, which runs on machine A and produces code for machine A.
L A

SC  S A
AC  L A

AC
The process illustrated by the T-diagrams is called bootstrapping and
can be summarized by the equation :

LSA + SAA = LAA

S A

A

L A

S

L A

A

Fig. 1.4.4.

Introduction to Compiler 1–8 C (CS/IT-Sem-5)

PART-3

Finite State Machines and Regular Expressions and their
Application to Lexical Analysis, Optimization of DFA

Based Pattern Matchers.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 1.5. What do you mean by regular expression ? Write the

formal recursive definition of a regular expression.

Answer
1. Regular expression is a formula in a special language that is used for

specifying simple classes of strings.

2. A string is a sequence of symbols; for the purpose of most text-based
search techniques, a string is any sequence of alphanumeric characters
(letters, numbers, spaces, tabs, and punctuation).

Formal recursive definition of regular expression :

Formally, a regular expression is an algebraic notation for characterizing a
set of strings.

1. Any terminals, i.e., the symbols belong to S are regular expression.
Null string (, ) and null set () are also regular expression.

2. If P and Q are two regular expressions then the union of the two
regular expressions, denoted by P + Q is also a regular expression.

3. If P and Q are two regular expressions then their concatenation denoted
by PQ is also a regular expression.

4. If P is a regular expression then the iteration (repetition or closure)
denoted by P* is also a regular expression.

5. If P is a regular expression then P, is a regular expression.

6. The expressions got by repeated application of the rules from (1) to (5)
over  are also regular expression.

Que 1.6. Define and differentiate between DFA and NFA with an

example.

1–9 C (CS/IT-Sem-5)Compiler Design

Answer

DFA :

1. A finite automata is said to be deterministic if we have only one transition
on the same input symbol from some state.

2. A DFA is a set of five tuples and represented as :

M = (Q, , , q0, F)

where, Q = A set of non-empty finite states

 = A set of non-empty finite input symbols

q0 = Initial state of DFA

F = A non-empty finite set of final state

 = Q ×   Q.

NFA :

1. A finite automata is said to be non-deterministic, if we have more than
one possible transition on the same input symbol from some state.

2. A non-deterministic finite automata is set of five tuples and represented
as :

M = (Q, , , q0, F)

where, Q = A set of non-empty finite states

 = A set of non-empty finite input symbols

q0 = Initial state of NFA and member of Q

F = A non-empty finite set of final states and
member of Q

(q, a)
q0
q1

q2

qn
Fig. 1.6.1.

 = It is transition function that takes a state from
Q and an input symbol from  and returns a
subset of Q. The  is represented as :

 = Q * ( {})  2Q

Introduction to Compiler 1–10 C (CS/IT-Sem-5)

Difference between DFA and NFA :

S. No. DFA NFA

Example : DFA for the language that contains the strings ending with
0 over Σ = {0, 1}.

1

0q0
1 0

Start qf

Fig. 1.6.2.

NFA for the language L which accept all the strings in which the third
symbol from right end is always a over  = {a, b}.

q0 q1 q2 q3
a a, b a, b

a, b a, b

Fig. 1.6.3.

Que 1.7. Explain Thompson’s construction with example.

Answer
Thompson’s construction :
1. It is an algorithm for transforming a regular expression to equivalent

NFA.

2. Following rules are defined for a regular expression as a basis for the
construction :

i. The NFA representing the empty string is :

10



1. It stands for deterministic finite
automata.

2. Only one transition is possible
from one state to another on
same input symbol.

3. Transition function  is written
as :

 : Q ×   Q

4. In DFA, -transition is not possible.

5. DFA cannot be converted into
NFA.

It stands for non-deterministic
finite automata.

More than one transition is
possible from one state to
another on same input symbol.

Transition function  is written
as :

 : Q × ( {}) 2Q

In NFA, -transition is possible.

NFA can be converted into
DFA.

1–11 C (CS/IT-Sem-5)Compiler Design

ii. If the regular expression is just a character, thus a can be represented
as :

10

a

iii. The union operator is represented by a choice of transitions from
a node thus a|b can be represented as :

10

a

b

iv. Concatenation simply involves connecting one NFA to the other
thus ab can be represented as :

210

a b

v. The Kleene closure must allow for taking zero or more instances
of the letter from the input; thus a* looks like :

3210

a







For example :
Construct NFA for r = (a|b)*a

For r1 = a,

32
astart

For r2 = b,

54
bstart

For r3 = a|b

61

2 3

4 5

start

a

b

 

 

The NFA for r4 = (r3)*

Introduction to Compiler 1–12 C (CS/IT-Sem-5)

6 71

2 3

4 5

start

a

b




  

 
0

Finally, NFA for r5 = r4·r1 = (a|b)*a

6 7 81

2 3

4 5

start

a

b





  

 
1

a

Que 1.8. Construct the NFA for the regular expression a|abb|a*b+

by using Thompson’s construction methodology.

AKTU 2017-18, Marks 10

Answer
Given regular expression : a + abb + a*b+

Step 1 : q1 qf
a + abb + a*b

+

Step 2 :

b

q1
a

q2
bq3

q4

a

qf

b
+

a*









Step 3 :



aq1



q2 q3

q5

b b

q6

q4
b

a
b

a



qf

1–13 C (CS/IT-Sem-5)Compiler Design

Que 1.9. Draw NFA for the regular expression ab*|ab.

AKTU 2016-17, Marks 10

Answer
Step 1 : a

a

Step 2 : b*

b


Step 3 : b
b

Step 4 : ab*

a  b 


Step 5 : ab
 a  b 

Step 6 : ab*|ab

a  b



1

2 3 4 5

a  b6 7 8 9

10







Fig. 1.9.1. NFA of ab*|ab.

Que 1.10. Discuss conversion of NFA into a DFA. Also give the

algorithm used in this conversion. AKTU 2017-18, Marks 10

Answer
Conversion from NFA to DFA :

Suppose there is an NFA N < Q, , q0, , F > which recognizes a language L.
Then the DFA D < Q', , q0, , F > can be constructed for language L as :

Step 1 : Initially Q = .

Step 2 : Add q0 to Q.

Step 3 : For each state in Q, find the possible set of states for each input
symbol using transition function of NFA. If this set of states is not in Q, add
it to Q.

Introduction to Compiler 1–14 C (CS/IT-Sem-5)

Step 4 : Final state of DFA will be all states which contain F (final states of
NFA).

Que 1.11. Construct the minimized DFA for the regular expression

(0 + 1)*(0 + 1) 10. AKTU 2016-17, Marks 10

Answer
Given regular expression : (0 + 1)*(0 + 1)10
NFA for given regular expression :

q1 qf
(0 + 1)*(0 + 1)10

q1 q2
(0 + 1)* q3

(0 + 1) 1 q4
0

q1 q2
(0 + 1)* 0

1
q4

0q3

q1 q5
 0 1 q4

0q3
1 q2 1

0, 1

qf

qf

qf

1

If we remove  we get

q1
0 1 q4

0q31

0, 1

qf

[  can be neglected so q1 = q5 = q2]
Now, we convert above NFA into DFA :
Transition table for NFA :

/ 0 1

 q1 q1 q3 q1 q3
q3  q4
q4 qf 

* qf  

Transition table for DFA :

/ 0 1 Let

 q1 q1 q3 q1 q3 q1 as A
q1 q3 q1 q3 q1 q3q4 q1 q3 as B

q1 q3 q4 q1 q3 qf q1 q3 q4 q1 q3 q4 as C

* q1 q3 qf q1 q3 q1 q3 q4 q1 q3 qf as D

1–15 C (CS/IT-Sem-5)Compiler Design

Transition diagram for DFA :

0 1 0
D1A B C

0 1
1

0

/ 0 1

 A B B
B B C
C D C

*D B C

For minimization divide the rows of transition table into 2 sets, as
Set-1 : It consists of non-final state rows.

A B B

B B C

C D C

Set-2 : It consists of final state rows.

*D B C

No two rows are similar.

So, the DFA is already minimized.

Que 1.12. How does finite automata useful for lexical analysis ?

Answer
1. Lexical analysis is the process of reading the source text of a program

and converting it into a sequence of tokens.

2. The lexical structure of every programming language can be specified
by a regular language, a common way to implement a lexical analyzer
is to :

a. Specify regular expressions for all of the kinds of tokens in the
language.

b. The disjunction of all of the regular expressions thus describes
any possible token in the language.

c. Convert the overall regular expression specifying all possible
tokens into a Deterministic Finite Automaton (DFA).

d. Translate the DFA into a program that simulates the DFA. This
program is the lexical analyzer.

Introduction to Compiler 1–16 C (CS/IT-Sem-5)

3. This approach is so useful that programs called lexical analyzer
generators exist to automate the entire process.

Que 1.13. Write down the regular expression for

1. The set of all string over {a, b} such that fifth symbol from right
is a.

2. The set of all string over {0, 1} such that every block of four
consecutive symbol contain at least two zero.

AKTU 2017-18, Marks 10

Answer
1. DFA for all strings over {a, b} such that fifth symbol from right is a :

Regular expression : (a + b)* a (a + b) (a + b) (a + b) (a + b)

2. Regular expression :
[00(0 + 1) (0 + 1) 0(0 + 1) 0(0 + 1) + 0(0 + 1) (0 + 1)0 + (0 + 1) 00(0 +1)

+ (0 + 1)0(0 + 1) 0 + (0 + 1) (0 + 1)00]

Que 1.14. Convert following NFA to equivalent DFA and hence

minimize the number of states in the DFA.

q2q1q0



b
a. c

b. c

. c

Fig. 1.14.1.

AKTU 2018-19, Marks 07

Answer
Transition table for -NFA :

/ a b c 

q0  q1 q2 {q1, q2}

q1 q0 q2 {q0, q2} 

q2    

-closure of {q0} = {q0, q1, q2}

-closure of {q1} = {q1}

-closure of {q2} = {q2}

1–17 C (CS/IT-Sem-5)Compiler Design

Transition table for NFA :

/ a b c

{q0, q1, q2} {q0, q1, q2} {q1, q2} {q0, q1, q2}

{q1, q2} {q0, q1, q2} {q2} {q0, q1, q2}

{q2}   

Let {q0, q1, q2} = A

{q1, q2} = B

{q2} = C

Transition table for NFA :
/ a b c

A A B A

B A C A

C   

Transition table for DFA :

/ a b c

A A B A

B A C A

C   

So, DFA is given by

A B C

D

a, c c

b
b
a a, b, c

a, b, c

Dead state

Fig. 1.14.2.

PART-4

Implementation of Lexical Analyzers, Lexical Analyzer Generator,
LEX Compiler.

Introduction to Compiler 1–18 C (CS/IT-Sem-5)

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 1.15. Explain the implementation of lexical analyzer.

Answer
Lexical analyzer can be implemented in following step :

1. Input to the lexical analyzer is a source program.

2. By using input buffering scheme, it scans the source program.

3. Regular expressions are used to represent the input patterns.

4. Now this input pattern is converted into NFA by using finite automation
machine.

Regular expression
Finite automata

Lexical analyzer

Symbol table

Tokenized
output file

Input program

Fig. 1.15.1. Implementation of lexical analyzer.

5. This NFA are then converted into DFA and DFA are minimized by using
different method of minimization.

6. The minimized DFA are used to recognize the pattern and broken into
lexemes.

7. Each minimized DFA is associated with a phase in a programming
language which will evaluate the lexemes that match the regular
expression.

8. The tool then constructs a state table for the appropriate finite state
machine and creates program code which contains the table, the
evaluation phases, and a routine which uses them appropriately.

Que 1.16. Write short notes on lexical analyzer generator.

Answer
1. For efficient design of compiler, various tools are used to automate the

phases of compiler. The lexical analysis phase can be automated using a
tool called LEX.

1–19 C (CS/IT-Sem-5)Compiler Design

2. LEX is a Unix utility which generates lexical analyzer.

3. The lexical analyzer is generated with the help of regular expressions.

4. LEX lexer is very fast in finding the tokens as compared to handwritten
LEX program in C.

5. LEX scans the source program in order to get the stream of tokens and
these tokens can be related together so that various programming
structure such as expression, block statement, control structures,
procedures can be recognized.

Que 1.17. Explain the automatic generation of lexical analyzer.

Answer
1. Automatic generation of lexical analyzer is done using LEX

programming language.

2. The LEX specification file can be denoted using the extension .l (often
pronounced as dot L).

3. For example, let us consider specification file as x.l.

4. This x.l file is then given to LEX compiler to produce lex.yy.c as shown
in Fig. 1.17.1. This lex.yy.c is a C program which is actually a lexical
analyzer program.

Fig. 1.17.1.

LEX
compiler

Lex specification
file

x.l.

lex.yy.c

Lexical analyzer
program

5. The LEX specification file stores the regular expressions for the token
and the lex.yy.c file consists of the tabular representation of the
transition diagrams constructed for the regular expression.

6. In specification file, LEX actions are associated with every regular
expression.

7. These actions are simply the pieces of C code that are directly carried
over to the lex.yy.c.

8. Finally, the C compiler compiles this generated lex.yy.c and produces
an object program a.out as shown in Fig. 1.17.2.

9. When some input stream is given to a.out then sequence of tokens
gets generated. The described scenario is shown in Fig. 1.17.2.

Introduction to Compiler 1–20 C (CS/IT-Sem-5)

lex.yy.c C
compiler

a.out

[Executable program]

Stream of

tokens
a.out

Input
strings from

source program

Fig. 1.17.2. Generation of lexical analyzer using LEX.

Que 1.18. Explain different parts of LEX program.

Answer
The LEX program consists of three parts :

% {
Declaration section
% }
% %
Rule section
% %
Auxiliary procedure section

1. Declaration section :
a. In the declaration section, declaration of variable constants can be

done.

b. Some regular definitions can also be written in this section.

c. The regular definitions are basically components of regular
expressions.

2. Rule section :
a. The rule section consists of regular expressions with associated

actions. These translation rules can be given in the form as :

R1 {action1}

R2 {action2}
.
.
.
Rn {actionn}

Where each Ri is a regular expression and each actioni is a program
fragment describing what action is to be taken for corresponding
regular expression.

b. These actions can be specified by piece of C code.

3. Auxiliary procedure section :
a. In this section, all the procedures are defined which are required

by the actions in the rule section.

1–21 C (CS/IT-Sem-5)Compiler Design

b. This section consists of two functions :
i. main() function
ii. yywrap() function

Que 1.19. Write a LEX program to identify few reserved words of C

language.

Answer
%{

int count;

/*program to recognize the keywords*/

%}

%%

[%\t] + /* “+” indicates zero or more and this pattern is use for

 ignoring the white spaces*/

auto | double | if| static | break | else | int | struct | case |
enum | long | switch | char | extern | near | typedef | const | float |
register| union| unsigned | void | while | default

printf(“C keyword(%d) :\t %s”,count,yytext);

[a-zA-Z]+ { printf(“%s: is not the keyword\n”, yytext);

%%

main()

{

yylex();

}

Que 1.20. What are the various LEX actions that are used in LEX

programming ?

Answer
There are following LEX actions that can be used for ease of programming
using LEX tool :

1. BEGIN : It indicates the start state. The lexical analyzer starts at state
0.

2. ECHO : It emits the input as it is.

3. yytext() :
a. yytext is a null terminated string that stores the lexemes when

lexer recognizes the token from input token.

b. When new token is found the contents of yytext are replaced by
new token.

Introduction to Compiler 1–22 C (CS/IT-Sem-5)

4. yylex() : This is an important function. The function yylex() is called
when scanner starts scanning the source program.

5. yywrap() :
a. The function yywrap() is called when scanner encounter end of

file.

b. If yywrap() returns 0 then scanner continues scanning.

c. If yywrap() returns 1 that means end of file is encountered.

6. yyin : It is the standard input file that stores input source program.

7. yyleng : yyleng stores the length or number of characters in the input
string.

Que 1.21. Explain the term token, lexeme and pattern.

Answer
Token :
1. A token is a pair consisting of a token name and an optional attribute

value.

2. The token name is an abstract symbol representing a kind of lexical
unit.

3. Tokens can be identifiers, keywords, constants, operators and
punctuation symbols such as commas and parenthesis.

Lexeme :
1. A lexeme is a sequence of characters in the source program that matches

the pattern for a token.

2. Lexeme is identified by the lexical analyzer as an instance of that token.

Pattern :
1. A pattern is a description of the form that the lexemes of a token may

take.

2. Regular expressions play an important role for specifying patterns.

3. If a keyword is considered as token, pattern is just sequence of characters.

PART-5

Formal Grammars and their Application to
BNF Notation.

Syntax Analysis,

Questions-Answers

Long Answer Type and Medium Answer Type Questions

1–23 C (CS/IT-Sem-5)Compiler Design

Que 1.22. Describe grammar.

Answer
A grammar or phrase structured grammar is combination of four tuples and
can be represented as G (V, T, P, S). Where,

1. V is finite non-empty set of variables/non-terminals. Generally non-
terminals are represented by capital letters like A, B, C, ……, X, Y, Z.

2. T is finite non-empty set of terminals, sometimes also represented by 
or VT. Generally terminals are represented by a, b, c, x, y, z, , ,  etc.

3. P is finite set whose elements are in the form   . Where  and  are
strings, made up by combination of V and T i.e., (V T).  has at least
one symbol from V. Elements of P are called productions or production
rule or rewriting rules.

4. S is special variable/non-terminal known as starting symbol.

While writing a grammar, it should be noted that V T = , i.e., no terminal
can belong to set of non-terminals and no non-terminal can belong to set of
terminals.

Que 1.23. What is Context Free Grammar (CFG) ? Explain.

Answer

Context free grammar :

1. A CFG describes a language by recursive rules called productions.

2. A CFG can be described as a combination of four tuples and represented
by G(V, T, P, S).

where,

V set of variables or non-terminal represented by A, B, …., Y, Z.

T set of terminals represented by a , b, c, …… x, y, z, +,
–, , (,) etc.

S  starting symbol.

P  set of productions.

3. The production used in CFG must be in the form of A  , where A is a
variable and  is string of symbols (V  T)*.

4. The example of CFG is :

G = (V, T, P, S)

Introduction to Compiler 1–24 C (CS/IT-Sem-5)

where V = {E},T = {+, , (,), id}

S = {E} and production P is given as :

E  E + E

E  E  E

E (E)

E  id

Que 1.24. Explain formal grammar and its application to syntax

analyzer.

Answer

1. Formal grammar represents the specification of programming language
with the use of production rules.

2. The syntax analyzer basically checks the syntax of the language.

3. A syntax analyzer takes the tokens from the lexical analyzer and groups
them in such a way that some programming structure can be recognized.

4. After grouping the tokens if at all any syntax cannot be recognized
then syntactic error will be generated.

5. This overall process is called syntax checking of the language.

6. This syntax can be checked in the compiler by writing the specifications.

7. Specification tells the compiler how the syntax of the programming
language should be.

Que 1.25. Write short note on BNF notation.

Answer
BNF notation :

1. The BNF (Backus-Naur Form) is a notation technique for context free
grammar. This notation is useful for specifying the syntax of the
language.

2. The BNF specification is as :
<symbol> : = Exp1|Exp2|Exp3...

Where <symbol> is a non terminal, and Exp1, Exp2 is a sequence of
symbols. These symbols can be combination of terminal or non
terminals.

1–25 C (CS/IT-Sem-5)Compiler Design

3. For example :

<Address> : = <fullname> : “,” <street> “,” <zip code>

<fullname> : = <firstname> “–” <middle name> “–” <surname>

<street> : = <street name> “,” <city>

We can specify first name, middle name, surname, street name, city
and zip code by valid strings.

4. The BNF notation is more often non-formal and in human readable
form. But commonly used notations in BNF are :

a. Optional symbols are written with square brackets.

b. For repeating the symbol for 0 or more number of times asterisk
can be used.

For example : {name}*

c. For repeating the symbols for at least one or more number of
times + is used.

For example : {name}+

d. The alternative rules are separated by vertical bar.

e. The group of items must be enclosed within brackets.

PART-6

Ambiguity, YACC.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 1.26. What is an ambiguous grammar ? Is the following

grammar is ambiguous ? Prove EE + |E(E)|id. The grammar should

be moved to the next line, centered. AKTU 2016-17, Marks 10

Answer
Ambiguous grammar : A context free grammar G is ambiguous if there
is at least one string in L(G) having two or more distinct derivation tree.

Proof : Let production rule is given as :

E  EE+

Introduction to Compiler 1–26 C (CS/IT-Sem-5)

E  E(E)

E  id

Parse tree for id(id)id + is

E

E E +

E E() id

id id

Only one parse tree is
possible for id(id)id+
so, the given grammar
is unambiguous.

Que 1.27. Write short note on :

i. Context free grammar
ii. YACC parser generator

OR
Write a short note on YACC parser generator.

AKTU 2017-18, Marks 05

Answer

i. Context free grammar : Refer Q. 1.23, Page 1–23C, Unit-1.

ii. YACC parser generator :

1. YACC (Yet Another Compiler - Compiler) is the standard parser
generator for the Unix operating system.

2. An open source program, YACC generates code for the parser in
the C programming language.

3. It is a Look Ahead Left-to-Right (LALR) parser generator, generating
a parser, the part of a compiler that tries to make syntactic sense of
the source code.

Que 1.28. Consider the grammar G given as follows :

S  AB|aaB

A  a|Aa

B  b

Determine whether the grammar G is ambiguous or not. If G is
ambiguous then construct an unambiguous grammar equivalent
to G.

1–27 C (CS/IT-Sem-5)Compiler Design

Answer
Given :

S  AB|aaB

A  a|Aa

B  b

Let us generate string aab from the given grammar. Parse tree for generating
string aab are as follows :

S

a B

b

a B

b

a

aA

A

S

Fig. 1.28.1.

Here for the same string, we are getting more than one parse tree. Hence,
grammar is an ambiguous grammar.
The grammar

S  AB
A  Aa/a
B  b

is an unambiguous grammar equivalent to G. Now this grammar has only
one parse tree for string aab.

S

A

a a

B

b
Fig. 1.28.2.

PART-7

The Syntactic Specification of Programming Languages : Context
Free Grammar (CFG), Derivation and Parse Trees,

Capabilities of CFG.

Introduction to Compiler 1–28 C (CS/IT-Sem-5)

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 1.29. Define parse tree. What are the conditions for

constructing a parse tree from a CFG ?

Answer
Parse tree :

1. A parse tree is an ordered tree in which left hand side of a production
represents a parent node and children nodes are represented by the
production’s right hand side.

2. Parse tree is the tree representation of deriving a Context Free Language
(CFL) from a given Context Free Grammar (CFG). These types of trees
are sometimes called derivation trees.

Conditions for constructing a parse tree from a CFG :

i. Each vertex of the tree must have a label. The label is a non-terminal or
terminal or null ().

ii. The root of the tree is the start symbol, i.e., S.

iii. The label of the internal vertices is non-terminal symbols VN.

iv. If there is a production A  X1X2XK . Then for a vertex, label A, the
children of that node, will be X1X2 XK .

v. A vertex n is called a leaf of the parse tree if its label is a terminal
symbol  or null ().

Que 1.30. How derivation is defined in CFG ?

Answer

1. A derivation is a sequence of tokens that is used to find out whether a
sequence of string is generating valid statement or not.

2. We can define the notations to represent a derivation.

3. First, we define two notations
G
 and

*

G
 .

4. If   is a production of P in CFG and a and b are strings in
(Vn  Vt)*, then

ab
G
 ab.

1–29 C (CS/IT-Sem-5)Compiler Design

5. We say that the production  is applied to the string ab to obtain
ab or we say that ab directly drives ab.

6. Now suppose 1, 2, 3, ...m are string in (Vn  Vt)*, m  1 and

1 G
 2, 2 G

 3, 3 G
 4, ..., m–1

G
 m.

7. Then we say that 1
*

G
 m, i.e., we say 1, drives m in grammar G. If 

drives by exactly i steps, we say 1

i

G
   .

Que 1.31. What do you mean by left most derivation and right

most derivation with example ?

Answer
Left most derivation : The derivation S  s is called a left most derivation,
if the production is applied only to the left most variable (non-terminal) at
every step.

Example : Let us consider a grammar G that consist of production rules
E  E + E | E  E | id.

Firstly take the production

E  E + E  E  E + E (Replace E  E  E)

 id  E + E (Replace E  id)

 id  id + E (Replace E  id)

 id  id + id (Replace E  id)

Right most derivation : A derivation S  s is called a right most derivation,
if production is applied only to the right most variable (non-terminal) at
every step.

Example : Let us consider a grammar G having production.

E  E + E | E  E | id.

Start with production

E  E  E

 E  E + E (Replace E  E + E)

 E  E + id (Replace E  id)

 E  id + id (Replace E  id)

 id  id + id (Replace E  id)

Introduction to Compiler 1–30 C (CS/IT-Sem-5)

Que 1.32. Describe the capabilities of CFG.

Answer
Various capabilities of CFG are :
1. Context free grammar is useful to describe most of the programming

languages.
2. If the grammar is properly designed then an efficient parser can be

constructed automatically.
3. Using the features of associatively and precedence information,

grammars for expressions can be constructed.

4. Context free grammar is capable of describing nested structures like :
balanced parenthesis, matching begin-end, corresponding if-then-else’s
and so on.

VERY IMPORTANT QUESTIONS

Following questions are very important. These questions
may be asked in your SESSIONALS as well as

UNIVERSITY EXAMINATION.

 Q. 1. Explain in detail the process of compilation. Illustrate the
output of each phase of compilation of the input
“a = (b + c)*(b + c)* 2”.

Ans. Refer Q. 1.1.

Q. 2. Define and differentiate between DFA and NFA with an
example.

Ans. Refer Q. 1.6.

Q. 3. Construct the minimized DFA for the regular expression
(0 + 1)*(0 + 1) 10.

Ans. Refer Q. 1.11.

Q. 4. Explain the implementation of lexical analyzer.
Ans. Refer Q. 1.15.

Q. 5. Convert following NFA to equivalent DFA and hence
minimize the number of states in the DFA.

1–31 C (CS/IT-Sem-5)Compiler Design

q2q1q0



b
a. c

b. c

. c

Fig. 1.
Ans. Refer Q. 1.14.

Q. 6. Explain the term token, lexeme and pattern.
Ans. Refer Q. 1.21.

Q. 7. What is an ambiguous grammar ? Is the following grammar
is ambiguous ? Prove EE + |E(E)|id. The grammar should
be moved to the next line, centered.

Ans. Refer Q. 1.26.

Q. 8. Define parse tree. What are the conditions for constructing
a parse tree from a CFG ?

Ans. Refer Q. 1.29.



2–1 C (CS/IT-Sem-5)Compiler Design

Basic Parsing
Techniques

2
UNIT

CONTENTS
Part-1 : Basic Parsing Techniques : 2–2C to 2–4C

Parsers Shift Reduce Parsing

Part-2 : Operator Precedence Parsing 2–4C to 2–8C

Part-3 : Top-down Parsing 2–8C to 2–15C
Predictive Parsers

Part-4 : Automatic Generation of 2–15C to 2–17C
Efficient Parser : LR Parsers
The Canonical Collections
of LR(0) Items

Part-5 : Constructing SLR 2–17C to 2–27C
Parsing Tables

Part-6 : Constructing canonical LR 2–27C to 2–28C
Parsing Tables

Part-7 : Constructing LALR 2–28C to 2–37C
Parsing Tables Using
Ambiguous Grammars
An Automatic Parser
Generator Implementation
of LR Parsing Tables

Basic Parsing Techniques 2–2 C (CS/IT-Sem-5)

PART-1
 Basic Parsing Techniques : Parsers, Shift Reduce Parsing.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 2.1. What is parser ? Write the role of parser. What are the

most popular parsing techniques ?
OR

Explain about basic parsing techniques. What is top-down parsing ?
Explain in detail.

Answer
A parser for any grammar is a program that takes as input string w and
produces as output a parse tree for w.

Role of parser :
1. The role of parsing is to determine the syntactic validity of a source

string.

2. Parser helps to report any syntax errors and recover from those errors.

3. Parser helps to construct parse tree and passes it to rest of phases of
compiler.

There are basically two type of parsing techniques :
1. Top-down parsing :

a. Top-down parsing attempts to find the left-most derivation for an
input string w, that start from the root (or start symbol), and
create the nodes in pre-defined order.

b. In top-down parsing, the input string w is scanned by the parser
from left to right, one symbol/token at a time.

c. The left-most derivation generates the leaves of parse tree in left
to right order, which matches to the input scan order.

d. In the top-down parsing, parsing decisions are based on the
lookahead symbol (or sequence of symbols).

2. Bottom-up parsing :

a. Bottom-up parsing can be defined as an attempt to reduce the input
string w to the start symbol of a grammar by finding out the right-
most derivation of w in reverse.

2–3 C (CS/IT-Sem-5)Compiler Design

b. Parsing involves searching for the substring that matches the right
side of any of the productions of the grammar.

c. This substring is replaced by the left hand side non-terminal of the
production.

d. Process of replacing the right side of the production by the left side
non-terminal is called “reduction”.

Que 2.2. Discuss bottom-up parsing. What are bottom-up

parsing techniques ?

Answer
Bottom-up parsing : Refer Q. 2.1, Page 2–2C, Unit-2.

Bottom-up parsing techniques are :

1. Shift-reduce parser :

a. Shift-reduce parser attempts to construct parse tree from leaves
to root and uses a stack to hold grammar symbols.

b. A parser goes on shifting the input symbols onto the stack until a
handle comes on the top of the stack.

c. When a handle appears on the top of the stack, it performs
reduction.

Seeking
for handle
on stack

top

Shift-reduce parser

$
Stack

id + id * id $1 2 3
Input tape

read/write head

Fig. 2.2.1. Shift-reduce parser.

d. This parser performs following basic operations :
i. Shift
ii. Reduce
iii. Accept
iv. Error

2. LR parser : LR parser is the most efficient method of bottom-up
parsing which can be used to parse the large class of context free
grammars. This method is called LR(k) parsing. Here

Basic Parsing Techniques 2–4 C (CS/IT-Sem-5)

a. L stands for left to right scanning.
b. R stands for right-most derivation in reverse.
c. k is number of input symbols. When k is omitted it is assumed to be 1.

Que 2.3. What are the common conflicts that can be encountered

in shift-reduce parser ?

Answer
There are two most common conflict encountered in shift-reduce parser :
1. Shift-reduce conflict :

a. The shift-reduce conflict is the most common type of conflict found
in grammars.

b. This conflict occurs because some production rule in the grammar
is shifted and reduced for the particular token at the same time.

c. This error is often caused by recursive grammar definitions where
the system cannot determine when one rule is complete and
another is just started.

2. Reduce-reduce conflict :
a. A reduce-reduce conflict is caused when a grammar allows two or

more different rules to be reduced at the same time, for the same
token.

b. When this happens, the grammar becomes ambiguous since a
program can be interpreted more than one way.

c. This error can be caused when the same rule is reached by more
than one path.

PART-2
Operator Precedence Parsing.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 2.4. Explain operator precedence parsing with example.

Answer
1. A grammar G is said to be operator precedence if it posses following

properties :

a. No production on the right side is .

2–5 C (CS/IT-Sem-5)Compiler Design

b. There should not be any production rule possessing two adjacent
non-terminals at the right hand side.

2. In operator precedence parsing, we will first define precedence relations
< ·  and · > between pair of terminals. The meanings of these relations
are :

p < · q p gives more precedence than q.

p  q p has same precedence as q.

p · > q p takes precedence over q.

For example :
Consider the grammar for arithmetic expressions

E  EA | (E) | – E | id

A  + | – | * | / | ^

1. Now consider the string id + id * id

2. We will insert $ symbols at the start and end of the input string. We will
also insert precedence operator by referring the precedence relation
table.

$ < · id · > + < · id · > * < id · > $

3. We will follow following steps to parse the given string :
a. Scan the input from left to right until first · > is encountered.
b. Scan backwards over = until < · is encountered.
c. The handle is a string between < · and · >.

4. The parsing can be done as follows :

$ < · id · > + < · id · > * < · id · > $ Handle id is obtained between <··>.
Reduce this by E  id.

E + < · id · > * < · id · > $ Handle id is obtained between <··>.
Reduce this by E  id.

E + E * < · id · > $ Handle id is obtained between <··>.
Reduce this by E  id.

E + E * E Remove all the non-terminals.

+ * Insert $ at the beginning and at the
end. Also insert the precedence
operators.

$ < · + < · * · > $ The * operator is surrounded by
<··>. This indicates that * becomes
handle. That means, we have to
reduce E * E operation first.

$ < · + · > $ Now + becomes handle. Hence, we
evaluate E + E.

$ $ Parsing is done.

Basic Parsing Techniques 2–6 C (CS/IT-Sem-5)

Que 2.5. Give the algorithm for computing precedence function.

Consider the following operator precedence matrix draw precedence
graph and compute the precedence function :

a () ; $
A > > >
(< < = <
) > > >
; < < > >

< <$

AKTU 2015-16, Marks 10

Answer
Algorithm for computing precedence function :
Input : An operator precedence matrix.

Output : Precedence functions representing the input matrix or an indication
that none exist.

Method :
1. Create symbols fa and ga for each a that is a terminal or $.

2. Partition the created symbols into as many groups as possible, in such a
way that if ab, then fa and gb are in the same group.

3. Create a directed graph whose nodes are the groups found in step 2. For
any a and b, if a <. b, place an edge from the group of gb to the group
of fa. If a .> b, place an edge from the group of fa to that of gb.

4. If the graph constructed in step 3 has a cycle, then no precedence
functions exist. If there are no cycles, let f(a) be the length of the longest
path from the group of fa; let g(b) be the length of the longest path from
the group of gb. Then there exists a precedence function.

Precedence graph for above matrix is :

fa ga

f(

f)

f;

f$

g(

g)

g;

g$

Fig. 2.5.1.

2–7 C (CS/IT-Sem-5)Compiler Design

From the precedence graph, the precedence function using
algorithm calculated as follows :

(() ; $

f 1 0 2 2 0

g 3 3 0 1 0

Que 2.6. Give operator precedence parsing algorithm. Consider

the following grammar and build up operator precedence table. Also
parse the input string (id+(id*id))

E  E +T|T, T  T*F|F, F (E)|id AKTU 2017-18, Marks 10

Answer
Operator precedence parsing algorithm :
Let the input string be a1, a2,....., an $. Initially, the stack contains $.
1. Set p to point to the first symbol of w$.
2. Repeat : Let a be the topmost terminal symbol on the stack and let b be

the current input symbol.
i. If only $ is on the stack and only $ is the input then accept and

break.
else
begin

ii. If a >· b or a =. b then shift a onto the stack and increment p to next
input symbol.

iii. else if a <· b then reduce b from the stack
iv. Repeat :

c  pop the stack
v. Until the top stack terminal is related by >· to the terminal most

recently popped.
else

vi. Call the error correcting routine
end

Operator precedence table :
* () id $

· · · · · ·
* · · · · · ·
(· · · ·
) · · · ·

id · · · ·
$ · · · ·


      

     
   
   
   
   



Basic Parsing Techniques 2–8 C (CS/IT-Sem-5)

Parsing :

$(< · id > + (< · id · > * < · id · >))$ Handle id is obtained between < · · >
Reduce this by F  id

(F + (< · id · > * < · id · >))$ Handle id is obtained between < · · >
Reduce this by F  id

(F + (F * < · id · >))$ Handle id is obtained between < · · >
Reduce this by F  id

(F + (F * F)) Remove all the non-terminals.

(+(*)) Insert $ at the beginning and at the
end.

Also insert the precedence operators.

$(< · + · >(< · * · >)) $ The * operator is surrounded by < · · >.
This indicates that * becomes handle.
That means we have to reduce T*F
operation first.

$ < · + · > $ Now + becomes handle. Hence we
evaluate E + T.

$ $ Parsing is done.

PART-3
Top-down Parsing, Predictive Parsers.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 2.7. What are the problems with top-down parsing ?

Answer
Problems with top-down parsing are :
1. Backtracking :

a. Backtracking is a technique in which for expansion of non-terminal
symbol, we choose alternative and if some mismatch occurs then
we try another alternative if any.

b. If for a non-terminal, there are multiple production rules beginning
with the same input symbol then to get the correct derivation, we
need to try all these alternatives.

2–9 C (CS/IT-Sem-5)Compiler Design

c. Secondly, in backtracking, we need to move some levels upward in
order to check the possibilities. This increases lot of overhead in
implementation of parsing.

d. Hence, it becomes necessary to eliminate the backtracking by
modifying the grammar.

2. Left recursion :
a. The left recursive grammar is represented as :

A


 A 

b. Here


 means deriving the input in one or more steps.

c. Here, A is a non-terminal and  denotes some input string.

d. If left recursion is present in the grammar then top-down parser
can enter into infinite loop.

A

A

A

A

A A

A

A

Subtree

Fig. 2.7.1. Left recursion.
e. This causes major problem in top-down parsing and therefore

elimination of left recursion is must.
3. Left factoring :

a. Left factoring is occurred when it is not clear that which of the two
alternatives is used to expand the non-terminal.

b. If the grammar is not left factored then it becomes difficult for the
parser to make decisions.

Que 2.8. What do you understand by left factoring and left

recursion and how it is eliminated ?

Answer
Left factoring and left recursion : Refer Q. 2.7, Page 2–8C, Unit-2.

Left factoring can be eliminated by the following scheme :
a. In general if

A  1|2 |...|n|1|...|m

is a production then it is not possible for parser to take a decision whether
to choose first rule or second.

b. In such situation, the given grammar can be left factored as

Basic Parsing Techniques 2–10 C (CS/IT-Sem-5)

A  A|1|...|m|

A  1|2|...|n

Left recursion can be eliminated by following scheme :
a. In general if

A  A1|A2 |...|An|1|2 ...|m
where no i begin with an A.

b. In such situation we replace the A-productions by

A  1 A|2 A|...|m A

A  1 A|2 A|...|m A|

Que 2.9. Eliminate left recursion from the following grammar

S  AB, A  BS|b, B  SA|a AKTU 2017-18, Marks 10

Answer
S  AB

A  BS|b

B  SA|a

S  AB

S  BSB|bB

S    
1 2

| |
A

S ASB aSB bB
  

S  aSBS|bBS

S  ASBS|

B  ABA|a

B   
1 2

| |B ABBA bBA a
 



B  bBA B |aB

B ABBA B|

A  BS|a

A  SAS|aS|a

A   
1 2

| |A BAAB aAB a
 



A  aAB A |aA

A BAAB A|

The production after left recursion is

S  aSB S |bBS

S ASB S|

A  aABA|aA

2–11 C (CS/IT-Sem-5)Compiler Design

A  BAABA|

B bBA B|aB

B  ABBA B|

Que 2.10. Write short notes on top-down parsing. What are top-

down parsing techniques ?

Answer
Top-down parsing : Refer Q. 2.1, Page 2–2C, Unit-2.

Top-down parsing techniques are :
1. Recursive-descent parsing :

i. A top-down parser that executes a set of recursive procedures to
process the input without backtracking is called recursive-descent
parser and parsing is called recursive-descent parsing.

ii. The recursive procedures can be easy to write and fairly efficient
if written in a language that implements the procedure call
efficiently.

2. Predictive parsing :
i. A predictive parsing is an efficient way of implementing recursive-

descent parsing by handling the stack of activation records
explicitly.

ii. The predictive parser has an input, a stack, a parsing table, and an
output. The input contains the string to be parsed, followed by $,
the right end-marker.

Parsing
Table

Predictive
parsing
program

Output

Inputa + b $

X
Y
Z
$

Stack

Fig. 2.10.1. Model of a predictive parser.

iii. The stack contains a sequence of grammar symbols with $
indicating button of the stack. Initially, the stack contains the
start symbol of the grammar preceded by $.

iv. The parsing table is a two-dimensional array M [A, a] where ‘A’ is
a non-terminal and ‘a’ is a terminal or the symbol $.

v. The parser is controlled by a program that behaves as follows :

Basic Parsing Techniques 2–12 C (CS/IT-Sem-5)

The program determines X symbol on top of the stack, and ‘a’ the
current input symbol. These two symbols determine the action of
the parser.

vi. Following are the possibilities :

a. If X = a= $, the parser halts and announces successful
completion of parsing.

b. If X = a  $, the parser pops X off the stack and advances the
input pointer to the next input symbol.

c. If X is a non-terminal, the program consults entry M[X, a] of
the parsing table M. This entry will be either an X-production
of the grammar or an error entry.

Que 2.11. Differentiate between top-down and bottom-up parser.

Under which conditions predictive parsing can be constructed for a
grammar ?

Answer

S. No. Top-down parser Bottom-up parser

Predictive parsing can be constructed if the following condition
holds :
1. Every grammar must be recursive in nature.

2. Each grammar must be left factored.

Que 2.12. What are the problems with top-down parsing ? Write

the algorithm for FIRST and FOLLOW. AKTU 2018-19, Marks 07

Answer
Problems with top-down parsing : Refer Q. 2.7, Page 2–8C, Unit-2.

1. In top-down parser left
recursion is done.

2. Backtracking is possible.

3. In this, input token are popped
off the stack.

4. First and follow are defined in
top-down parser.

5. Predictive parser and recursive
descent parser are top-down
parsing techniques.

In bottom-up parser right-most
derivation is done.

Backtracking is not possible.

In this, input token are pushed on
the stack.

First and follow are used in
bottom-up parser.

Shift-reduce parser, operator
precedence parser, and LR parser
are bottom-up parsing technique.

2–13 C (CS/IT-Sem-5)Compiler Design

Algorithm for FIRST and FOLLOW :
1. FIRST function :

i. FIRST (X) is a set of terminal symbols that are first symbols
appearing at R.H.S. in derivation of X.

ii. Following are the rules used to compute the FIRST functions.

a. If X determine terminal symbol ‘a’ then the FIRST(X) = {a}.

b. If there is a rule X   then FIRST(X) contain {}.

c. If X is non-terminal and X Y1 Y2 Y3 ... Yk is a production and
if  is in all of FIRST (Y1) ... FIRST (Yk) then

FIRST(X) = {FIRST(Y1)  FIRST(Y2)  FIRST(Y3)....  FIRST(Yk)}.

2. FOLLOW function :
i. FOLLOW(A) is defined as the set of terminal symbols that appear

immediately to the right of A.

ii. FOLLOW(A) = {a | S
*

  Aa  where  and  are some grammar
symbols may be terminal or non-terminal}.

iii. The rules for computing FOLLOW function are as follows :

a. For the start symbol S place $ in FOLLOW(S).

b. If there is a production A  B  then everything in FIRST()
without  is to be placed in FOLLOW(B).

c. If there is a production A  B  or A  B and FIRST(B)
contain  then FOLLOW(B) = FOLLOW(A). That means
everything in FOLLOW(A) is in FOLLOW(B).

Que 2.13. Differentiate between recursive descent parsing and

predictive parsing.

Answer

S. No. Recursive descent parsing Predictive parsing

1. CFG is used to build recursive
routine.

2. RHS of production rule is
converted into program.

3. Parsing table is not
constructed.

4. First and follow is not used.

Recursive routine is not build.

Production rule is not converted
into program.

Parsing table is constructed.

First and follow is used to
construct parsing table.

Basic Parsing Techniques 2–14 C (CS/IT-Sem-5)

Que 2.14. Explain non-recursive predictive parsing. Consider the

following grammar and construct the predictive parsing table
E  TE
E  + TE|
T  FT
T  *FT|

F  F*|a|b AKTU 2017-18, Marks 10

Answer
Non-recursive descent parsing (Predictive parsing) : Refer Q. 2.10,
Page 2–11C, Unit-2.

Numerical :

E  TE 

E  + TE |

T  FT 

T  *F T |

F  F*|a|b

First we remove left recursion

F  F   
1 2

| |* a b
  

F  aF |bF 

F *F |

FIRST(E) = FIRST(T) = FIRST(F) = {a, b}

FIRST(E ) = { +, }, FIRST(F ) = {*, }

FIRST(T ) = {*, }

FOLLOW(E) = { $ }

FOLLOW(E) = { $ }

FOLLOW(T) = {+, $ }

FOLLOW(T) = {+, $ }

FOLLOW(F) = {*, +, $ }

FOLLOW(F) = {*, +, $ }

2–15 C (CS/IT-Sem-5)Compiler Design

Predictive parsing table :

Non-terminal Input symbol

+ * a b $

E E  TE E  TE

E  E  + TE E  

T T  FT T  FT

T  T   T  *FT T  

F F  aF  F  bF 

F  F    F    F   
F   *F 

PART-4
Automatic Generation of Efficient Parsers : LR Parsers, The

Canonical Collections of LR(0) Items

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 2.15. Discuss working of LR parser with its block diagram.

Why it is most commonly used parser ?

Answer
Working of LR parser :
1. The working of LR parser can be understood by using block diagram as

shown in Fig. 2.15.1.

Fig. 2.15.1. Model of an LR parser.

a1 a2 a3 an–1 an $

Sm

Action goto

Output

Input tape

Stack
LR parsing

programXm

Sm–1

Xm–1

S0

Basic Parsing Techniques 2–16 C (CS/IT-Sem-5)

2. In LR parser, it has input buffer for storing the input string, a stack for
storing the grammar symbols, output and a parsing table comprised of
two parts, namely action and goto.

3. There is a driver program and reads the input symbol one at a time from
the input buffer. This program is same for all LR parser.

4. It reads the input string one symbol at a time and maintains a stack.

5. The stack always maintains the following form :

S0X1 S1X2 S2...........Xm-1 Sm-1 Xm Sm

where Xi is a grammar symbol, each Si is the state and Sm state is top
of the stack.

6. The action of the driver program depends on action {Sm, ai] where ai is
the current input symbol.

7. Following action are possible for input ai ai + 1 an :

a. Shift : If action [Sm, ai] = shift S, the parser shift the input symbol,
ai onto the stack and then stack state S. Now current input symbol
becomes ai+1.

Stack Input

S0X1 S1X2...........Xm-r Sm-r Xm Smai S, ai+1, ai+2............an$

b. Reduce : If action [Sm, ai] = reduce A  the parser executes a
reduce move using the A  production of the grammar. If A 
 has r grammar symbols, first 2r symbols are popped off the stack
(r state symbol and r grammar symbol). So, the top of the stack
now becomes Sm-r then A is pushed on the stack, and then state

goto [Sm-r A] is pushed on the stack. The current input symbol is
still ai.

Stack Input

S0X1 S1X2...........Xm-r Sm-r AS ai ai+1............an$

where, S = Goto [Sm-r A]

i. If action [Sm, ai] = accept, parsing is completed.

ii. If action [Sm, ai] = error, the parser has discovered a syntax
error.

LR parser is widely used for following reasons :

1. LR parsers can be constructed to recognize most of the programming
language for which context free grammar can be written.

2. The class of grammar that can be parsed by LR parser is a superset of
class of grammars that can be parsed using predictive parsers.

3. LR parser works using non-backtracking shift-reduce technique.

4. LR parser is an efficient parser as it detects syntactic error very quickly.

2–17 C (CS/IT-Sem-5)Compiler Design

Que 2.16. Write short note on the following :

1. LR (0) items
2. Augmented grammar
3. Kernel and non-kernel items
4. Functions closure and goto

Answer
1. LR(0) items : The LR (0) item for grammar G is production rule in

which symbol • is inserted at some position in R.H.S. of the rule. For
example

S  •ABC

S  A•BC

S  AB•C

S  ABC•

The production S   generates only one item S  •.

2. Augmented grammar : If a grammar G is having start symbol S then
augmented grammar G in which S is a new start symbol such that
S  S. The purpose of this grammar is to indicate the acceptance of
input. That is when parser is about to reduce S  S, it reaches to
acceptance state.

3. Kernel items : It is collection of items S  • S and all the items whose
dots are not at the left most end of R.H.S. of the rule.

Non-kernel items : The collection of all the items in which • are at the
left end of R.H.S. of the rule.

4. Functions closure and goto : These are two important functions
required to create collection of canonical set of LR (0) items.

PART-5
Constructing SLR Parsing Tables.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 2.17. Explain SLR parsing techniques. Also write the

algorithm to construct SLR parsing table.

Answer
The SLR parsing can be done as :

Basic Parsing Techniques 2–18 C (CS/IT-Sem-5)

Context free grammar

Construction of canonical set of items

Construction of SLR parsing table

Parsing of input string
Input

string

Output

Fig. 2.17.1. Working of SLR parser.
Algorithm for construction of an SLR parsing table :
Input : C the canonical collection of sets of items for an augmented grammar
G.
Output : If possible, an LR parsing table consisting of parsing action function
ACTION and a goto function GOTO.
Method :
Let C = [I0, I1, , In]. The states of the parser are 0, 1....n state i being
constructed from Ii.
The parsing action for state is determined as follows :
1. If [A •a] is in Ii and GOTO (Ii, a) = Ij then set ACTION [i, a] to

“shift j”. Here a is a terminal.
2. If [A •] is in Ii the set ACTION [i, a] to “reduce A ” for all ‘a’ in

FOLLOW (A).
3. If [S S•] is in Ii, then set ACTION [i, $] to “accept”.

The goto transitions for state i are constructed using the rule.
4. If GOTO (Ii, A) = Ij then GOTO [i, A] = j.
5. All entries not defined by rules (1) through rule (4) are made “error”.
6. The initial state of the parser is the one constructed from the set of

items containing [S•S].
The parsing table consisting of the parsing ACTION and GOTO function
determined by this algorithm is called the SLR parsing table for G. An
LR parser using the SLR parsing table for G is called the SLR parser
for G and a grammar having an SLR parsing table is said to be SLR(1).

Que 2.18. Construct an SLR(1) parsing table for the following

grammar :
S  A)
S  A, P| (P, P

P  {num, num} AKTU 2015-16, Marks 10

2–19 C (CS/IT-Sem-5)Compiler Design

Answer
The augmented grammar G for the above grammar G is :

S S
S  A)
S  A, P
S  (P, P
P  {num, num}

The canonical collection of sets of LR(0) item for grammar are as follows :
I0 : S • S

S  • A)
S  • A, P
S  • (P, P
P  • {num, num}

I1 = GOTO (I0, S)
I1 : S S •
I2 = GOTO (I0, A)
I2 : S  A •)

S  A •, P
I3 = GOTO (I0, ()
I3 : S  (• P, P

P  •{num, num}
I4 = GOTO (I0, {)
I4 : P  {• num, num}
I5 = GOTO (I2,))
I5 : S  A) •
I6 = GOTO (I2, ,)
I6 : S  A , • P

P  •{num, num}
I7 = GOTO (I3, P)
I7 : S  (P•, P
I8 = GOTO (I4, num)
I8 : P  {num •, num}
I9 = GOTO (I6, P)
I9 : S  A, P•
I10 = GOTO (I7, ,)
I10 : S  (P, •P

P  • {num, num}
I11 = GOTO (I8, ,)
I11 : P  {num, • num}
I12 = GOTO (I10, P)

S  (P , P •
I13 = GOTO (I11, num)
I13 : P  {num, num •}
I14 = GOTO (I13 ,})
I14 : P  {num, num} •

Basic Parsing Techniques 2–20 C (CS/IT-Sem-5)

Action Goto

Item) , ({ Num } $ S A P
Set

0 S3 S4 1 2

1 accept

2 S5 S6

3 S4 6

4 S8

5 r1

6 S4 r2 9

7 S10

8 S11

9 r2

10 S4 12

11 S13

12 r3

13 S14

14 r4 r4

Que 2.19. Consider the following grammar

S  AS|b
A  SA|a

Construct the SLR parse table for the grammar. Show the actions

of the parser for the input string “abab”. AKTU 2016-17, Marks 15

Answer
The augmented grammar is :

S  S
S  AS|b
A  SA|a

The canonical collection of LR(0) items are
Io : S • S

S • AS|• b
A • SA|• a

I1 = GOTO (I0, S)
I1 : S S • S AS|• b

A S • A

2–21 C (CS/IT-Sem-5)Compiler Design

A  • SA|• a
I2 = GOTO (I0, A)
I2 : S A • S

S • AS|• b
A • SA|• a

I3 = GOTO (I0, b)
I3 : S b •

I4 = GOTO (I0, a)
I4 : A a •

I5 = GOTO (I1, A)

I5 : A SA •

I6 = GOTO (I1, S) = I1

I7 = GOTO (I1, a) = I4

I8 = GOTO (I2, S)

I8 : S  AS •

I9 = GOTO (I2, A) = I2

I10 = GOTO (I2, b) = I3

Let us numbered the production rules in the grammar as :
1. S  AS
2. S  b
3. A  SA
4. A  a

FIRST(S) = FIRST(A) = {a, b}

FOLLOW(S) ={$, a, b}

FOLLOW(A) = {a, b}

Table : 2.19.1. SLR parsing table.

Action Goto

States a b $ S A

I0 S4 S3 1 2

I1 S4 S3 accept 5

I2 S4 S3 8 2

I3 r2 r2 r2

I4 r4 r4

I5 r3 r3 r3

I8 r1 r1 r1

Basic Parsing Techniques 2–22 C (CS/IT-Sem-5)

I0

I2A

S

I8

A
I1 I5

A

I4

I3
a

a

b

b

a
b

S

Fig. 2.19.1. DFA for set of items.
Table 2.19.2 : Parse the input abab using parse table.

Stack Input buffer Action

$0 abab$ Shift

$0a4 bab$ Reduce A  a

$0A2 bab$ Shift

$0A2b3 ab$ Reduce S  b

$0A2S8 ab$ Shift S  AS

$0S1 ab$ Shift

$0S1a4 b$ Reduce A  a

$0S1A5 b$ Reduce A  AS

$0A2 b$ Shift

$0A2b3 $ Reduce S  b

$0A2S8 $ Reduce S  AS

$0S1 $ Accept

Que 2.20. Consider the following grammar E  E + E | E*E|(E)|id.

Construct the SLR parsing table and suggest your final parsing

table. AKTU 2017-18, Marks 10

Answer
The augmented grammar is as :

E  E
E  E + E
E  E * E
E  (E)
E  id

The set of LR(0) items is as follows :

2–23 C (CS/IT-Sem-5)Compiler Design

I0 : E  •E
E  •E + E
E  •E * E
E  •(E)
E  •id

I1 = GOTO (I0, E)
I1 : E  E•

E  E• + E
E  E•* E

I2 = GOTO (I0, ()
I2 : E  (•E)

E  •E + E
E  •E * E
E  •(E)
E  •id

I3 = GOTO (I0, id)
I3 : E  id•
I4 = GOTO (I1, +)
I4 : E  E + •E

E  •E + E
E  •E * E
E  •(E)
E  •id

I5 = GOTO (I1, *)
I5 : E  E * •E

E  •E + E
E  •E * E
E  •(E)
E  •id

I6 = GOTO (I2, E)
I6 : E  (E•)

E  E• + E
E  E• * E

I7 = GOTO (I4, E)
I7 : E  E + E•

E  E• + E
E  E• * E

I8 = GOTO (I5, E)
I8 : E  E * E•

E  E• + E
E  E• * E

I9 = GOTO (I6,))
I9 : E  (E)•

Basic Parsing Techniques 2–24 C (CS/IT-Sem-5)

Action Goto

State id + * () $ E

0 S3 S2 1

1 S4 S5 accept

2 S3 S2 6

3 r4 r4 r4 r4

4 S3 S2 8

5 S3 S2 8

6 S4 S5 S3

7 r1 S5 r1 r1

8 r2 r2 r2 r2

9 r3 r3 r3 r3

Que 2.21. Perform shift reduce parsing for the given input strings

using the grammar S (L)|a L L, S|S

i. (a, (a, a)) ii. (a, a) AKTU 2018-19, Marks 07

Answer
i.

Stack contents Input string Actions

$ (a, (a, a))$ Shift (
$((a, (a, a))$ Shift a

$(a ,(a, a))$ Reduce S  a
$(S ,(a, a))$ Reduce L  S
$(L ,(a, a))$ Shift)
$(L, (a, a))$ Shift (

$(L, (a, a))$ Shift a
$(L, (a ,a))$ Reduce S  a
$(L, (S ,a))$ Reduce L  S
$(L, (L ,a))$ Shift,
$(L, (L, a))$ Shift a

$(L, (L, a))$ Reduce S  a
$(L, (L, S))$ Reduce L  L, S

$(L, (L))$ Shift)
$(L, (L))$ Reduce S  (L)
(L, S) Reduce L  L, S

(L) Shift)
$(L) $ Reduce S  (L)
$S $ Accept

2–25 C (CS/IT-Sem-5)Compiler Design

ii.

Stack contents Input string Actions

$ (a, a)$ Shift (
(a, a) Shift a

(a , a) Reduce S  a
(S , a) Reduce L  S
(L , a) Shift ,
(L, a) Shift a

(L, a) Reduce S  a
(L, S) Reduce L  L, S

(L) Shift)
$(L) $ Reduce S  L
$S $ Accept

Que 2.22. Construct LR(0) parsing table for the following

grammar
S  cB|ccA
A  cA|a

B  ccB|b AKTU 2018-19, Marks 07

Answer
The augmented grammar is :

S  S

S  cB|ccA

A  cA|a

B  ccB|b

The canonical collection of LR (0) items are :

I0 : S • S

S  • cB|• ccA

A  • cA|• a

B  • ccB|• b

I1 = GOTO (I0, S)

I1 : SS •

I2 = GOTO (I0, c)

I2 : S  c • B|c • cA

A  c•A

B  c•cB

A  •cA|•a

B  •ccB|•b

Basic Parsing Techniques 2–26 C (CS/IT-Sem-5)

I3 = GOTO (I0, a)

I3 : A  a •

I4 = GOTO (I0, b)

I4 : B  b •

I5 = GOTO (I2, B)

I5 : S  cB •

I6 = GOTO (I2, A)

I6 : A  cA •

I7 = GOTO (I2, c)

I7 : S  cc • A

B  cc • B

A  c • A

B  c • cB

A  • cA/ • a
B  • ccB/ • b

I8 = GOTO (I7, A)
I8 : S  ccA •

A  cA •
I9 = GOTO (I7, B)

I9 : B ccB •
I10 = GOTO (I7, c)

I10 : B  cc • B
A  c • A
B  c • cB
B  • ccB| • b
A  • cA| • a

I11 = GOTO (I10, A)

I11 : A  cA •

DFA for set of items :

I0 I1 I6

I8I2 I5

I9I3 I4 I7

I10 I11

S
c

ba

a
a

b
b

A

B
c

A

B

A
c

ca

b

Fig. 2.22.1.

2–27 C (CS/IT-Sem-5)Compiler Design

Let us numbered the production rules in the grammar as

1. S  cB

2. S  ccA

3. A  cA

4. A  a

5. B  ccB

6. B  b

States a b c $ A B S

Action GOTO

I0 S3 S4 S2 1

I1 Accept

I2 S3 S4 S7 6 5

I3 r4 r4 r4 r4

I4 r6 r6 r6 r6

I5 r1 r1 r1 r1

I6 r3 r3 r3 r3

I7 S3 S4 S10 8 9

I8 r2, r3 r r2 3, r r2 3, r r2 3,

I9 r5 r5 r5 r5

I10 S3 S4 S10 11

I11 r3 r3 r3 r3

PART-6
Constructing Canonical LR Parsing Tables.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 2.23. Give the algorithm for construction of canonical LR

parsing table.

Basic Parsing Techniques 2–28 C (CS/IT-Sem-5)

Answer
Algorithm for construction of canonical LR parsing table :

Input : An augmented grammar G.

Output : The canonical parsing table function ACTION and GOTO for G.

Method : Construct C= {I0, I1,...., In} the collection of sets of LR (1) items of
G. State i of the parser is constructed from Ii.

1. The parsing actions for state i are determined as follows :

a. If [A •a , b] is in Ii and GOTO (Ii, a) = Ij, then set
ACTION [i, a] to “shift j”. Here, a is required to be a terminal.

b. If [A •, a] is in Ii, A  S, then set ACTION [i, a] to “reduce
A •”.

c. If [S S•, $] is in Ii, then set ACTION [i, $] to “accept”.

The goto transitions for state i are determined as follows :

2. If GOTO (Ii, A) = Ij then GOTO [i, A] = j.

3. All entries not defined by rules (1) and (2) are made “error”.

4. The initial state of parser is the one constructed from the set containing
items [S •S, $].

If the parsing action function has no multiple entries then grammar is
said to be LR (1) or LR.

PART-7

Constructing LALR Parsing Tables Using Ambiguous Grammars, An
Automatic Parser Generator, Implementation of LR Parsing Tables.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 2.24. Give the algorithm for construction of LALR parsing

table.

Answer
The algorithm for construction of LALR parsing table is as :

Input : An augmented grammar G.

Output : The LALR parsing table function ACTION and GOTO for G.

2–29 C (CS/IT-Sem-5)Compiler Design

Method :
1. Construct C = {I0, Ij,........., In} the collection of sets of LR (1) items.

2. For each core present among the LR (1) items, find all sets having that
core, and replace these sets by their union.

3. Let C = {J0, J1,..........Jm} be the resulting sets of LR (1) items. The
parsing actions for state i are constructed from Ji. If there is a parsing
action conflicts, the algorithms fails to produce a parser and the
grammar is said not to be LALR (1).

4. The goto table constructed as follows. If ‘J’ is the union of one or more
sets of LR (1) items, i.e., J = I1  I2  I3........ Ik, then the cores of the
GOTO (I1, X), GOTO (I2, X),......, GOTO (Ik, X) are the same. Since I1,
I2,......., Ik all have the same core. Let k be the union of all sets of the
items having the same core as GOTO (I1, X). Then GOTO (J, X) = k.

The table produced by this algorithm is called LALR parsing table for
grammar G. If there are no parsing action conflicts, then the given
grammar is said to be LALR(1) grammar.

The collection of sets of items constructed in step ‘3’ of this algorithm is
called LALR(1) collections.

Que 2.25. For the grammar S  aAd |bBd |aBe | bAe A  f, B  f

Construct LR(1) parsing table. Also draw the LALR table from the

derived LR(1) parsing table. AKTU 2017-18, Marks 10

Answer

Augmented grammar :

S  S

S  aAd|bBd| aBe|bAe

A  f

B  f

Canonical collection of LR(1) grammar :

I0 : S •S, $

S  •aAd, $

S  •bBd, $

S  •aBe, $

S  •bAe, $

A  •f, d/e

B  •f, d/e

Basic Parsing Techniques 2–30 C (CS/IT-Sem-5)

I1 : = GOTO(I0, S)

I1: S •S, $

I2 : = GOTO(I0, a)

I2 : S  a•Ad, $

S  aBe, $

A  •f, d

B  •f, e

I3 : = GOTO(I0, b)

I3 : S  b•Bd, $

S  b•Ae, $

A  •f, d

B  •f, e

I4 : = GOTO(I2, A)

I4 : S aA•d, $

I5 : = GOTO(I2, B)

I5 : S aB•d, $

I6 : = GOTO(I2, f)

I6 : A  f•, d

B  f•, e

I7 : = GOTO(I3, B)

I7 : S bB•d, $

I8 : = GOTO(I3, A)

I8 : S bA•e, $

I9 : = GOTO(I3, f)

I9 : A  f•, d

B  f•, e

I10 : = GOTO(I4, d)

I10 : S aAd• , $

I11 : = GOTO(I5, d)

I11 : S aBd• , $

I12 : = GOTO(I7, d)

I12 : S bBd• , $

I13 : = GOTO(I8, e)

I13 : S bAe• , $

2–31 C (CS/IT-Sem-5)Compiler Design

State Action Goto

a b d e f $ A B S

I0 S2 S3 1

I1 accept

I2 S6 4 5

I3 S9 7 8

I4 r10

I5 r11

I6 r6

I7 r12

I8 r13

I9

I10 r1

I11 r3

I12 r2

I13 r4

Que 2.26. Show that the following grammar

S  Aa|bAc|Bc|bBa
A  d
B  d

is LR(1) but not LALR (1). AKTU 2015-16, Marks 10

Answer
Augmented grammar G for the given grammar :

S  S

S  Aa

S  bAc

S  Bc

S  bBa

Basic Parsing Techniques 2–32 C (CS/IT-Sem-5)

A  d

B  d

Canonical collection of sets of LR(0) items for grammar are as follows :

I0 : S  •S, $

S  •Aa, $

S  •bAc, $

S  •Bc, $

S  •bBa, $

A  •d, a

B  •d, c

I1 = GOTO (I0, S)

I1 : S  S•, $

I2 = GOTO (I0, A)

I2 : S  A•a, $

I3 = GOTO (I0, b)

I3 : S  b•Ac, $

S  b•Ba, $

A  •d, c

B  •d, a

I4 = GOTO (I0, B)

I4 : S  B•c, $

I5 = GOTO (I0, d)

I5 : A  d•, a

B  d•, c

I6 = GOTO (I0, a)

I6 : S  Aa•, $

I7 = GOTO (I3, A)

I7 : S  bA•c, $

I8 = GOTO (I3, B)

I8 : S  bB•a, $

I9 = GOTO (I3, d)

2–33 C (CS/IT-Sem-5)Compiler Design

I9 : A  d•, c

B  d•, a

I10 = GOTO (I4, c)

I10 : S  Bc•, $

I11 = GOTO (I7, c)

I11 : S  bAc•, $

I12 = GOTO (I8, a)

I12 : S  bBa•, $

The action/goto table will be designed as follows :

Table 2.26.1.

State Action Goto

a b c d $ S A B

0 S3 S5 1 2 4

1 accept

2 S6

3 S9 7 8

4 S10

5 r5 r6

6 r1

7 S11

8 S12

9 r6 r5

10 r3

11 r2

12 r4

Since the table does not have any conflict. So, it is LR(1).

For LALR(1) table, item set 5 and item set 9 are same. Thus we merge
both the item sets (I5, I9) = item set I59. Now, the resultant parsing table
becomes :

Basic Parsing Techniques 2–34 C (CS/IT-Sem-5)

Table 2.26.2.

State Action Goto

a b c d $ S A B

0 S3 S59 1 2 4

1 accept

2 S6

3 S59 7 8

4 S10

59 r59, r6 r6, r59

6 r1

7 S11

8 S12

10 r3

11 r2

12 r4

Since the table contains reduce-reduce conflict, it is not LALR(1).

Que 2.27. Construct the LALR parsing table for following

grammar :
S  AA
A  aA
A  b

is LR (1) but not LALR(1). AKTU 2015-16, Marks 10

Answer
The given grammar is :

S  AA
A  aA|b

The augmented grammar will be :

S S

S  AA

A  aA|b

2–35 C (CS/IT-Sem-5)Compiler Design

The LR (1) items will be :

I0 : S •S, $

S  •AA, $

A  •aA, a/b

A  •b, a/b
I1 = GOTO (I0, S)

I1: S S•, $

I2 = GOTO (I0, A)

I2: S  A•A, $

A  •aA, $

A  •b, $

I3 = GOTO (I0, a)

I3: A  a•A, a/b

A  •aA, a/b

A  •b, a/b
I4 = GOTO (I0, b)

I4: A  b•, a/b

I5 = GOTO (I2, A)

I5: S  AA•, $

I6 = GOTO (I2, a)

I6: A  a•A, $

A  •aA, $

A  •b, $

I7 = GOTO (I2, b)

I7: A  b•, $

I8 = GOTO (I3, A)

I8: A  aA•, a/b

I9 = GOTO (I6, A)

I9: A  aA•, $

Basic Parsing Techniques 2–36 C (CS/IT-Sem-5)

Table 2.27.1.

State
Action Goto

a b $ S A

0 S3 S4 1 2

1 accept

2 S6 S7 5

3 S3 S4 8

4 r3 r3

5 r1

6 S6 S7 9

7 r3

8 r2 r2

9 r2

Since table does not contain any conflict. So it is LR(1).
The goto table will be for LALR I3 and I6 will be unioned, I4 and I7 will
be unioned, and I8 and I9 will be unioned.

So, I36 : A a•A, a / b / $

A  •aA, a / b / $

A  •b, a / b / $

I47 : A  b•, a / b / $

I89 : A  aA•, a / b / $ and LALR table will be :

Table 2.27.2.

State
Action Goto

a b $ S A

0 S36 S47 1 2

1 accept

2 S36 S47 5

36 S36 S47 89

47 r3 r3 r3

5 r1

89 r2 r2 r2

2–37 C (CS/IT-Sem-5)Compiler Design

Since, LALR table does not contain any conflict. So, it is also LALR(1).
DFA :

I0 I1

I2

I36

I47

I5

I89

S

A

a

b

b b

aa

A

A

Fig. 2.27.1.

VERY IMPORTANT QUESTIONS

Following questions are very important. These questions
may be asked in your SESSIONALS as well as

UNIVERSITY EXAMINATION.

 Q. 1. What is parser ? Write the role of parser. What are the
most popular parsing techniques ?

Ans. Refer Q. 2.1.

Q. 2. Explain operator precedence parsing with example.
Ans. Refer Q. 2.4.

Q. 3. What are the problems with top-down parsing ?
Ans. Refer Q. 2.7.

Q. 4. What do you understand by left factoring and left recursion
and how it is eliminated ?

Ans. Refer Q. 2.8.

Q. 5. Eliminate left recursion from the following grammar
S  AB, A  BS|b, B  SA|a

Ans. Refer Q. 2.9.

Q. 6. What are the problems with top-down parsing ? Write the
algorithm for FIRST and FOLLOW.

Ans. Refer Q. 2.12.

Basic Parsing Techniques 2–38 C (CS/IT-Sem-5)

Q. 7. Explain non-recursive predictive parsing. Consider the
following grammar and construct the predictive parsing
table
E  TE
E  + TE|
T  FT
T  *FT|
F  F*|a|b

Ans. Refer Q. 2.14.

Q. 8. Construct an SLR(1) parsing table for the following
grammar :
S  A)
S  A, P| (P, P
P  {num, num}

Ans. Refer Q. 2.18.

Q. 9. Consider the following grammar E  E + E | E*E|(E)|id.
Construct the SLR parsing table and suggest your final
parsing table.

Ans. Refer Q. 2.20.

Q. 10. Perform shift reduce parsing for the given input strings
using the grammar S (L)|a L L, S|S

i. (a, (a, a))
 ii. (a, a)

Ans. Refer Q. 2.21.



3–1 C (CS/IT-Sem-5)Compiler Design

CONTENTS
Part-1 : Syntax-Directed Translation : 3–2C to 3–5C

Syntax-Directed Translation Scheme,
Implementation of Syntax-Directed
Translators

Part-2 : Intermediate Code, Post Fix 3–6C to 3–9C
Notation, Parse Trees and
Syntax Trees

Part-3 : Three Address Code, 3–9C to 3–13C
Quadruple and Triples

Part-4 : Translation of Assignment 3–13C to 3–18C
Statements

Part-5 : Boolean Expressions 3–18C to 3–21C
Statements that Alter
the Flow of Control

Part-6 : Postfix Translation : Array 3–21C to 3–23C
Reference in Arithmetic
Expressions

Part-7 : Procedures Call 3–23C to 3–25C

Part-8 : Declarations Statements 3–25C to 3–26C

Syntax-Directed
Translations

3
UNIT

Syntax-Directed Translations 3–2 C (CS/IT-Sem-5)

PART-1
Syntax-Directed Translation : Syntax-Directed Translation
Schemes, Implementation of Syntax-Directed Translators.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 3.1. Define syntax directed translation. Construct an

annotated parse tree for the expression (4 * 7 + 1) * 2, using the

simple desk calculator grammar. AKTU 2018-19, Marks 07

Answer
1. Syntax directed definition/translation is a generalization of context

free grammar in which each grammar production X   is associated
with a set of semantic rules of the form a := f (b1, b2, bk), where a is
an attribute obtained from the function f.

2. Syntax directed translation is a kind of abstract specification.
3. It is done for static analysis of the language.
4. It allows subroutines or semantic actions to be attached to the

productions of a context free grammar. These subroutines generate
intermediate code when called at appropriate time by a parser for that
grammar.

5. The syntax directed translation is partitioned into two subsets called
the synthesized and inherited attributes of grammar.

Lexical analysis


Token stream


Syntax analysis


Parse tree


Semantic analysis


Dependency graph


Evaluation order for semantic rules


Translation of constructs

Syntax directed
translation

Fig. 3.1.1.

3–3 C (CS/IT-Sem-5)Compiler Design

Annotated tree for the expression (4*7 + 1)*2 :

L.val = 58

*

*

E.val = 29 F.val = 2

id.lexval = 2E.val = 29

T.val = 4

id.lexval = 7

F.val = 7

id.lexval = 4

E

T

E)(

F T

T F

F

id

id id

T.val = 28 +

Fig. 3.1.2.

F.val = 1

Que 3.2. What is syntax directed translation ? How are semantic

actions attached to the production ? Explain with an example.

Answer
Syntax directed translation : Refer Q. 3.1, Page 3–2C, Unit-3.
Semantic actions are attached with every node of annotated parse tree.
Example : A parse tree along with the values of the attributes at nodes
(called an “annotated parse tree”) for an expression 2 + 3*5 with synthesized
attributes is shown in the Fig. 3.2.1.

E

E

T

F

T

F

F

*

digit.lexval=2 digit.lexval=3

digit.lexval=5

digit

digit

E.val=2

T.val=2

F.val=2 F.val=3

F.val=5T.val=3

T.val=15

E.val=17

digit

Fig. 3.2.1.

Syntax-Directed Translations 3–4 C (CS/IT-Sem-5)

Que 3.3. Explain attributes. What are synthesized and inherited

attribute ?

Answer
Attributes :
1. Attributes are associated information with language construct by

attaching them to grammar symbols representing that construct.

2. Attributes are associated with the grammar symbols that are the labels
of parse tree node.

3. An attribute can represent anything (reasonable) such as string, a
number, a type, a memory location, a code fragment etc.

4. The value of an attribute at parse tree node is defined by a semantic rule
associated with the production used at that node.

Synthesized attribute :
1. An attribute at a node is said to be synthesized if its value is computed

from the attributed values of the children of that node in the parse tree.

2. A syntax directed definition that uses the synthesized attributes is
exclusively said to be S-attributed definition.

3. Thus, a parse tree for S-attributed definition can always be annotated
by evaluating the semantic rules for the attributes at each node from
leaves to root.

4. If the translations are specified using S-attributed definitions, then the
semantic rules can be conveniently evaluated by the parser itself during
the parsing.

For example : A parse tree along with the values of the attributes at
nodes (called an “annotated parse tree”) for an expression 2 + 3*5 with
synthesized attributes is shown in the Fig. 3.3.1.

E

E

T

F

T

F

F

*

digit.lexval=2 digit.lexval=3

digit.lexval=5

digit

digit

E.val=2

T.val=2

F.val=2 F.val=3

F.val=5T.val=3

T.val=15

E.val=17

digit

Fig. 3.3.1. An annotated parse tree for expression 2 + 3 5.*

3–5 C (CS/IT-Sem-5)Compiler Design

Inherited attribute :
1. An inherited attribute is one whose value at a node in a parse tree is

defined in terms of attributes at the parent and/or sibling of that node.
2. Inherited attributes are convenient for expressing the dependence of a

programming language construct.
For example : Syntax directed definitions that uses inherited attribute
are given as :

D  TL L.type : = T.Type
T  int T.type : = integer
T  real T.type : = real
L  L1, id L1.type : = L.type

enter (id.prt, L.type)
L  id enter (id.prt, L.type)

The parse tree, along with the attribute values at the parse tree nodes, for an
input string int id1, id2 and id3 is shown in the Fig. 3.3.2.

T.type=int

L.type=int

L.type=int

int

T

D

L

id3

id2

id1

L

L

Fig. 3.3.2. Parse tree with inherited
attributes for the string int id , id , id .1 2 3

Que 3.4. What is the difference between S-attributed and

L-attributed definitions ?

Answer

S. No. S-attributed definition L-attributed definition

It uses synthesized and inherited
attributes.

Semantics actions are placed at
anywhere on RHS.

L-attributes are evaluated by
traversing the parse tree in depth
first, left to right.

1. It uses synthesized attributes.

2. Semantics actions are placed at
right end of production.

3. S-attributes can be evaluated
during parsing.

Syntax-Directed Translations 3–6 C (CS/IT-Sem-5)

PART-2
Intermediate Code, Postfix Notation, Parse Trees and Syntax Trees.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 3.5. What is intermediate code generation and discuss

benefits of intermediate code ?

Answer
Intermediate code generation is the fourth phase of compiler which takes
parse tree as an input from semantic phase and generates an intermediate
code as output.
The benefits of intermediate code are :
1. Intermediate code is machine independent, which makes it easy to

retarget the compiler to generate code for newer and different processors.
2. Intermediate code is nearer to the target machine as compared to the

source language so it is easier to generate the object code.
3. The intermediate code allows the machine independent optimization of

the code by using specialized techniques.
4. Syntax directed translation implements the intermediate code

generation, thus by augmenting the parser, it can be folded into the
parsing.

Que 3.6. What is postfix translation ? Explain it with suitable

example.

Answer
Postfix (reverse polish) translation : It is the type of translation in which
the operator symbol is placed after its two operands.
For example :
Consider the expression : (20 + (–5)* 6 + 12)
Postfix for above expression can be calculate as :

(20 + t1 * 6 + 12) t1 = 5 –
20 + t2 + 12 t2 = t16*

t3 + 12 t3 = 20 t2 +
t4 t4 = t3 12 +

Now putting values of t4, t3, t2, t1
t4 = t3 12 +

3–7 C (CS/IT-Sem-5)Compiler Design

20 t2 + 12 +
20 t1 6 * + 12 +
(20) 5 – 6 * + 12 +

Que 3.7. Define parse tree. Why parse tree construction is only

possible for CFG ?

Answer
Parse tree : A parse tree is an ordered tree in which left hand side of a
production represents a parent node and children nodes are represented by
the production’s right hand side.
Conditions for constructing a parse tree from a CFG are :
i. Each vertex of the tree must have a label. The label is a non-terminal or

terminal or null ().
ii. The root of the tree is the start symbol, i.e., S.

iii. The label of the internal vertices is non-terminal symbols VN.

iv. If there is a production A  X1X2XK . Then for a vertex, label A, the
children node, will be X1X2 XK .

v. A vertex n is called a leaf of the parse tree if its label is a terminal
symbol  or null ().

Parse tree construction is only possible for CFG. This is because the properties
of a tree match with the properties of CFG.

Que 3.8. What is syntax tree ? What are the rules to construct

syntax tree for an expression ?

Answer
1. A syntax tree is a tree that shows the syntactic structure of a program

while omitting irrelevant details present in a parse tree.

2. Syntax tree is condensed form of the parse tree.

3. The operator and keyword nodes of a parse tree are moved to their
parent and a chain of single production is replaced by single link.

Rules for constructing a syntax tree for an expression :
1. Each node in a syntax tree can be implemented as a record with several

fields.

2. In the node for an operator, one field identifies the operator and the
remaining field contains pointer to the nodes for the operands.

3. The operator often is called the label of the node.

4. The following functions are used to create the nodes of syntax trees for
expressions with binary operators. Each function returns a pointer to
newly created node.

a. Mknode(op, left, right) : It creates an operator node with label op
and two field containing pointers to left and right.

Syntax-Directed Translations 3–8 C (CS/IT-Sem-5)

b. Mkleaf(id, entry) : It creates an identifier node with label id and
the field containing entry, a pointer to the symbol table entry for
the identifier.

c. Mkleaf(num, val) : It creates a number node with label num and
a field containing val, the value of the number.

For example : Construct a syntax tree for an expression a – 4 + c. In
this sequence, p1, p2,, p5 are pointers to nodes, and entry a and
entry c are pointers to the symbol table entries for identifier ‘a’ and ‘c’
respectively.

p1 := mkleaf (id, entry a);
p2 := mkleaf (num, 4);
p3 := mknode (‘–’, p1, p2);
p4 := mkleaf (id, entry c);
p5 := mknode (‘+’, p3, p4);

The tree is constructed in bottom-up fashion. The function calls mkleaf
(id, entry a) and mkleaf (num, 4) construct the leaves for a and 4. The
pointers to these nodes are saved using p1 and p2. Call mknode
(‘–’, p1, p2) then constructs the interior node with the leaves for a and 4
as children. The syntax tree will be :

to entry for a

num

id

to entry for c
id 4

–

+

Fig. 3.8.1. The syntax tree for a – 4 + c.

Que 3.9. Draw syntax tree for the arithmetic expressions :

a * (b + c) – d/2. Also write the given expression in postfix notation.

Answer
Syntax tree for given expression : a * (b + c) – d/2

–

b c

+a

*

2d

/

Fig. 3.9.1.

3–9 C (CS/IT-Sem-5)Compiler Design

Postfix notation for a * (b + c) – d/2
t1 = bc + (a * t1 – d/2)
t2 = a t1 * (t2 – d/2)
t3 = d 2 / (t2 – t3)
t4 = t2 t3 – (t4)

Put value of t1, t2, t3
t4 = t2 t3 –

= t2 d 2 / –
= at1 * d 2 / –
= abc + * d 2 / –

PART-3
Three Address Code, Quadruples and Triples.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 3.10. Explain three address code with examples.

Answer
1. Three address code is an abstract form of intermediate code that can be

implemented as a record with the address fields.

2. The general form of three address code representation is :

a := b op c

where a, b and c are operands that can be names, constants and op
represents the operator.

3. The operator can be fixed or floating point arithmetic operator or logical
operators or boolean valued data. Only single operation at right side of
the expression is allowed at a time.

4. There are at most three addresses are allowed (two for operands and
one for result). Hence, the name of this representation is three address
code.

For example : The three address code for the expression a = b + c + d
will be :

t1 := b + c

t2 := t1 + d

a := t2
Here t1 and t2 are the temporary names generated by the compiler.

Syntax-Directed Translations 3–10 C (CS/IT-Sem-5)

Que 3.11. What are different ways to write three address code ?

Answer
Different ways to write three address code are :
1. Quadruple representation :

a. The quadruple is a structure with at most four fields such as op,
arg1, arg2, result.

b. The op field is used to represent the internal code for operator, the
arg1 and arg2 represent the two operands used and result field is
used to store the result of an expression.

For example : Consider the input statement x := – a * b + – a * b

The three address code is

t1 := uminus a
t t b2 1 := *
t a3 := –
t t b4 3 := *
t t t5 2 4 := +
x t := 5

uminus a t1

* t1 t2

uminus a t3

* t3 t4

+ t2 t5

:= t5 x

b

b
t4

Op Arg1 Arg2 Result

2. Triples representation : In the triple representation, the use of
temporary variables is avoided by referring the pointers in the symbol
table.

For example : x := – a * b + – a * b

The triple representation is

uminus a(0)
* (0)(1)

uminus a(2)
* (2)(3)
+ (1)(4)
:= x(5)

b

b
(3)

(4)

Op Arg1 Arg2Number

3. Indirect triples representation : In the indirect triple representation,
the listing of triples is done and listing pointers are used instead of using
statement.

For example : x = – a * b + – a + b

The indirect triples representation is

3–11 C (CS/IT-Sem-5)Compiler Design

uminus a(0)

* (11)(1)

uminus a(2)

* (13)(3)

+ (12)(4)

:= x(5)

b

b

(14)

(15)

(11)(0)

(1)

(2)

(3)

(4)

(5)

StatementLocation

(12)

(13)

(14)

(15)

(16)

Op Arg1 Arg2Number

Three address code of given statement is :
1. If A > C and B < D goto 2

2. If A = 1 goto 6

3. If A < = D goto 6

4. t1 = A + 2

5. A = t1

6. t2 = C + 1

7. C = t2

Que 3.12. Write the quadruples, triple and indirect triple for the

following expression :
(x + y) * (y + z) + (x + y + z)

AKTU 2018-19, Marks 07

Answer
The three address code for given expression :

t1 := x + y

t2 := y + z

t3 := t1* t2

t4 := t1 + z

t5 := t3 + t4

i. The quadruple representation :

Location Operator Operand 1 Operand 2 Result

(1) + x y t1
(2) + y z t2
(3) * t1 t2 t3
(4) + t1 z t4
(5) + t3 t4 t5

Syntax-Directed Translations 3–12 C (CS/IT-Sem-5)

ii. The triple representation :

Location Operator Operand 1 Operand 2

(1) + x y
(2) + y z
(3) * (1) (2)
(4) + (1) z
(5) + (3) (4)

iii. The indirect triple representation :

Location Operator Operand 1 Operand 2 Location Statement

(1) + x y (1) (11)
(2) + y z (2) (12)
(3) * (11) (12) (3) (13)
(4) + (11) z (4) (14)
(5) + (13) (14) (5) (15)

Que 3.13. Generate three address code for the following code :

switch a + b
{
case 1 : x = x + 1
case 2 : y = y + 2
case 3 : z = z + 3
default : c = c – 1

} AKTU 2015-16, Marks 10

Answer
101 : t1 = a + b goto 103
102 : goto 115
103 : t = 1 goto 105
104 : goto 107
105 : t2 = x + 1
106 : x = t2
107 : if t = 2 goto 109
108 : goto 111
109 : t3 = y + 2
110 : y = t3
111 : if t = 3 goto 113
112 : goto 115
113 : t4 = z + 3
114 : z = t4
115 : t5 = c – 1
116 : c = t5
117 : Next statement

3–13 C (CS/IT-Sem-5)Compiler Design

Que 3.14. Generate three address code for

C[A[i, j]] = B[i, j] + C[A[i, j]] + D[i, j] (You can assume any data for
solving question, if needed). Assuming that all array elements are
integer. Let A and B a 10 × 20 array with low1 = low = 1.

AKTU 2017-18, Marks 10

Answer
Given : low1 = 1 and low = 1, n1 = 10, n2 = 20.

B[i, j] = ((i × n2) +j) × w + (base – ((low1 × n2) + low) × w)
B[i, j] = ((i × 20) +j) × 4 + (base – ((1 × 20) + 1) × 4)
B[i, j] = 4 × (20 i + j) + (base – 84)

Similarly, A[i, j] = 4 × (20 i + j) + (base – 84)
and, D[i, j] = 4 × (20 i + j) + (base – 84)
Hence, C[A[i, j]] = 4 × (20 i + j) + (base – 84) + 4 × (20 i + j) +

(base – 84) + 4 × (20 i + j) + (base – 84)
= 4 × (20 i + j) + (base – 84) [1 + 1 + 1]

= 4 × 3 × (20 i + j) + (base – 84) × 3

= 12 × (20 i + j) + (base – 84) × 3

Therefore, three address code will be

t1 = 20 × i

t2 = t1 + j

t3 = base – 84

t4 = 12 × t2

t5 = t4 + 3 × t3

PART-4
Translation of Assignment Statements.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 3.15. How would you convert the following into intermediate

code ? Give a suitable example.
i. Assignment statements

ii. Case statements AKTU 2016-17, Marks 15

Syntax-Directed Translations 3–14 C (CS/IT-Sem-5)

Answer
i. Assignment statements :

Production rule Semantic actions

1. The look_up returns the entry for id.name in the symbol table if it exists
there.

2. The function append is used for appending the three address code to the
output file. Otherwise, an error will be reported.

3. Newtemp() is the function used for generating new temporary variables.

4. E.place is used to hold the value of E.

Example : x := (a + b)*(c + d)

We will assume all these identifiers are of the same type. Let us have
bottom-up parsing method :

S  id := E

E  E1 + E2

E  E1 * E2

E  – E1

E  (E1)

E  id

{ id_entry := look_up(id.name);
if id_entry  nil then

append (id_entry ‘:=’ E.place)
else error; /* id not declared*/

}

{ E.place := newtemp();
append (E.place ‘:=’ E1.place ‘+’ E2.place)

}

{ E.place := newtemp();
append (E.place ‘:=’ E1.place ‘*’ E2.place)

}

{ E.place := newtemp();
append (E.place ‘:=’ ‘minus’ E1.place)

}

{ E. place:= E1.place }

{ id_entry: = look_up(id.name);
if id_entry  nil then

append (id_entry ‘:=’ E.place)
else error; /* id not declared*/

}

3–15 C (CS/IT-Sem-5)Compiler Design

E  id

E  id

E  E1 + E2

E  id

E  id

E  E1 + E2

E  E1 * E2

S  id := E

E.place := a

E.place := b

E.place := t1

E.place := c

E.place := d

E.place := t2

E.place := t3

t1 := a + b

t2 := c + d

t3 := (a + b)*(c + d)

x := t3

Production rule Semantic action Output
attribute evaluation

ii. Case statements :

Production rule Semantic action

switch expression
{
case value : statement
case value : statement

...
case value : statement

default : statement

}

Switch E
{

case v1 : s1
case v2 : s2

...
case vn–1 : sn–1
default : sn

}

Evaluate E into t such that t = E
goto check
L1 : code for s1

goto last
L2 : code for s2

goto last

Ln : code for sn
goto last

check : if t = v1 goto L1
if t = v2 goto L2

...
if t = vn–1 goto Ln–1
goto Ln

last

Syntax-Directed Translations 3–16 C (CS/IT-Sem-5)

Example :
switch(ch)

{

case 1 : c = a + b;

break;

case 2 : c = a – b;

break;

}

The three address code can be

if ch = 1 goto L1

if ch = 2 goto L2

L1 : t1
 := a + b

c := t1

goto last

L2 : t2 := a – b

c := t2

goto last

last :

Que 3.16. Write down the translation procedure for control

statement and switch statement. AKTU 2018-19, Marks 07

Answer
1. Boolean expression are used along with if-then, if-then-else,

while-do, do-while statement constructs.

2. S  If E then S1 | If E then S1 else S2|while E do S1 |do E1 while E.

3. All these statements ‘E’ correspond to a boolean expression evaluation.

4. This expression E should be converted to three address code.

5. This is then integrated in the context of control statement.

Translation procedure for if-then and if-then-else statement :
1. Consider a grammar for if-else

S  if E then S1|if E then S1 else S2

2. Syntax directed translation scheme for if-then is given as follows :

S if E then S1

E.true := new_label()

E.false := S.next

S1.next := S.next

3–17 C (CS/IT-Sem-5)Compiler Design

S.code := E.code || gen_code(E.true ‘:’) || S1.code

3. In the given translation scheme || is used to concatenate the strings.

4. The function gen_code is used to evaluate the non-quoted arguments
passed to it and to concatenate complete string.

5. The S.code is the important rule which ultimately generates the three
address code.

S  if E then S1 else S2

E.true := new_label()

E.false := new_label()

S1.next := S.next

S2.next := S.next

S.code := E.code || gen_code(E.true ‘:’) ||

S1.code := gen_code(‘goto’, S.next) ||

gen_code(E.false ‘:’) || S2.code

For example : Consider the statement if a < b then a = a + 5 else
a = a + 7

if a<b E.true

E.true:
E.false:

a := a+5
a := a+7

S1

The three address code for if-else is

100 : if a < b goto 102

101 : goto 103

102 : L1 a := a+5 /*E.true*/

103 : L2 a := a+7

Hence, E.code is “if a < b” L1 denotes E.true and L2 denotes E.false is
shown by jumping to line 103 (i.e., S.next).

Translation procedure for while-do statement :

Production Semantic rules

S  while E do S1 S.begin : = newlable
E.true : = newlable
E.false : = S. next
S1.next : = S.begin
S.code = gen(S.begin ‘:’)||

E.code ||
gen(E.true ‘:’)||S1.code||
gen(‘goto’S.being)

Syntax-Directed Translations 3–18 C (CS/IT-Sem-5)

Translation procedure for do-while statement :

Production Semantic rules

S  do S1 while E S.begin : = newlable
E.true : = S.begin
E.false : = S.next

S.code = S1.code||E.code||
gen(E.true ‘:’)||
gen(‘goto’S.being)

PART-5
Boolean Expressions, Statements that alter the Flow of Control.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 3.17. Define backpatching and semantic rules for boolean

expression. Derive the three address code for the following
expression : P < Q or R < S and T < U.

AKTU 2015-16, Marks 10

OR
Write short notes on backpatching.

Answer
1. Backpatching is the activity of filling up unspecified information of labels

using appropriate semantic actions during the code generation process.

2. Backpatching refers to the process of resolving forward branches that
have been used in the code, when the value of the target becomes
known.

3. Backpatching is done to overcome the problem of processing the
incomplete information in one pass.

4. Backpatching can be used to generate code for boolean expressions and
flow of control statements in one pass.

To generate code using backpatching following functions are used :
1. Makelist(i) : Makelist is a function which creates a new list from one

item where i is an index into the array of instructions.

2. Merge(p1, p2) : Merge is a function which concatenates the lists pointed
by p1 and p2, and returns a pointer to the concatenated list.

3–19 C (CS/IT-Sem-5)Compiler Design

3. Backpatch(p, i) : Inserts i as the target label for each of the instructions
on the list pointed by p.

Backpatching in boolean expressions :
1. The solution is to generate a sequence of branching statements where

the addresses of the jumps are temporarily left unspecified.

2. For each boolean expression E we maintain two lists :

a. E.truelist which is the list of the (addresses of the) jump statements
appearing in the translation of E and forwarding to E.true.

b. E.falselist which is the list of the (addresses of the) jump statements
appearing in the translation of E and forwarding to E.false.

3. When the label E.true (resp. E.false) is eventually defined we can walk
down the list, patching in the value of its address.

4. In the translation scheme below :

a. We use emit to generate code that contains place holders to be filled
in later by the backpatch procedure.

b. The attributes E.truelist, E.falselist are synthesized.

c. When the code for E is generated, addresses of jumps corresponding
to the values true and false are left unspecified and put on the lists
E.truelist and E.falselist, respectively.

5. A marker non-terminal M is used to capture the numerical address of a
statement.

6. nextinstr is a global variable that stores the number of the next statement
to be generated.

The grammar is as follows :

B  B1|| MB2  B1 AND MB2  !B1  (B1)  E1 rel E2  True  False

M  

The translation scheme is as follows :

i. B  B1 || MB2{backpatch (B1.falselist, M.instr);

B.truelist = merge (B1.truelist,

B2.truelist);

B.falselist = B2.falselist;}

ii. B  B1AND MB2

{backpatch (B1.truelist, M.instr);

B.truelist = B2.truelist;

B.falselist = merge (B1.falselist,
B2.falselist);}

iii. B  !B1{B.truelist = B1.falselist;

B.falselist = B1.truelist;}

Syntax-Directed Translations 3–20 C (CS/IT-Sem-5)

iv. B  (B1){B.truelist = B1.truelist;

B.falselist = B1.falselist;}

v. B  E1 rel E2{B.truelist = makelist (nextinstr);

B.falselist = makelist (nextinstr + 1);

append (‘if’ E1.addr relop E2.addr ‘goto_’);

append (‘goto_’);}

vi. B  true{B.truelist = makelist (nextinstr);

append (‘goto_’);}

vii. B  false{B.falselist = makelist (nextinstr);

append (‘goto_’);}

viii. M  {M.instr = nextinstr;}

Three address code :
100 : if P < Q goto_

101 : goto 102

102 : if R < S goto 104

103 : goto_

104 : if T < U goto_

105 : goto_

Que 3.18. Explain translation scheme for boolean expression.

Answer
Translation scheme for boolean expression can be understand by following
example.

Consider the boolean expression generated by the following grammar :

E  E OR E

E  E AND E

E  NOT E

E  (E)

E  id relop id

E  TRUE

E  FALSE

Here the relop is denoted by , , , <, >. The OR and AND are left associate.
The highest precedence is NOT then AND and lastly OR.
The translation scheme for boolean expressions having numerical
representation is as given below :

3–21 C (CS/IT-Sem-5)Compiler Design

Production rule Semantic rule

E  E1 OR E2 {
E.place := newtemp()
append(E.place ‘:=’ E1.place ‘OR’ E2.place)
}

E  E1 AND E2 {
E.place := newtemp()
append(E.place ‘:=’ E1.place ‘AND’ E2.place)
}

E  NOT E1 {
E.place := newtemp()
append(E.place ‘:=’ ‘NOT’ E1.place)
}

E  (E1) {
E.place := E1.place
}

E  id1 relop id2 {
E.place := newtemp()
append(‘if’ id1.place relop.op id2.place ‘goto’
next_state + 3);
append(E.place ‘:=’ ‘0’);
append(‘goto’ next_state +2);
append(E.place := ‘1’)
}

E  TRUE {
E.place := newtemp();
append(E.place ‘:=’ ‘1’)
}

E  FALSE {
E.place := newtemp()
append(E.place ‘:=’ 0)
}

PART-6
Postfix Translation : Array References in Arithmetic Expressions.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Syntax-Directed Translations 3–22 C (CS/IT-Sem-5)

Que 3.19. Write a short note on postfix translation.

Answer
1. In a production A  , the translation rule of A.CODE consists of the

concatenation of the CODE translations of the non-terminals in  in the
same order as the non-terminals appear in .

2. Production can be factored to achieve postfix form.

Postfix translation of while statement :
Production : S  while M1 E do M2 S1

Can be factored as :
1. S C S1
2. C  W E do
3. W  while
A suitable transition scheme is given as :

Production rule Semantic action

W  while W.QUAD = NEXTQUAD

C  W E do C W E do

S  C S1 BACKPATCH (S1.NEXT,

C.QUAD)

S.NEXT = C.FALSE

GEN (goto C.QUAD)

Que 3.20. What is postfix notations ? Translate (C + D)*(E + Y) into

postfix using Syntax Directed Translation Scheme (SDTS).

AKTU 2017-18, Marks 10

Answer
Postfix notation : Refer Q. 3.6, Page 3–6C, Unit-3.
Numerical : Syntax directed translation scheme to specify the translation of
an expression into postfix notation are as follow :
Production :

E  E1 + T
E1  T
T  T1 × F
T1  F
F  (E)
F id

3–23 C (CS/IT-Sem-5)Compiler Design

Schemes :
E.code = E1.code ||T1code || ‘+’

E1.code = T.code

T1.code = T1.code ||F.code || ‘×’

T1.code = F.code

F.code = E.code

F.code = id.code
where ‘||’ sign is used for concatenation.

PART-7
Procedures Call.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 3.21. Explain procedure call with example.

Answer
Procedures call :
1. Procedure is an important and frequently used programming construct

for a compiler.

2. It is used to generate code for procedure calls and returns.

3. Queue is used to store the list of parameters in the procedure call.

4. The translation for a call includes a sequence of actions taken on entry
and exit from each procedure. Following actions take place in a calling
sequence :

a. When a procedure call occurs then space is allocated for activation
record.

b. Evaluate the argument of the called procedure.

c. Establish the environment pointers to enable the called procedure
to access data in enclosing blocks.

d. Save the state of the calling procedure so that it can resume execution
after the call.

e. Also save the return address. It is the address of the location to
which the called routine must transfer after it is finished.

f. Finally generate a jump to the beginning of the code for the called
procedure.

Syntax-Directed Translations 3–24 C (CS/IT-Sem-5)

For example : Let us consider a grammar for a simple procedure call
statement :

1. S  call id(Elist)

2. Elist  Elist, E

3. Elist  E

A suitable transition scheme for procedure call would be :

Production rule Semantic action

S  call id(Elist) for each item p on QUEUE do
GEN (param p)
GEN (call id.PLACE)

Elist  Elist, E append E.PLACE to the end of QUEUE

Elist  E initialize QUEUE to contain only
E.PLACE

Que 3.22. Explain the concept of array references in arithmetic

expressions.

Answer
1. An array is a collection of elements of similar data type. Here, we assume

the static allocation of array, whose subscripts ranges from one to some
limit known at compile time.

2. If width of each array element is ‘w’ then the ith element of array A
begins in location,

base + (i – low) * d
where low is the lower bound on the subscript and base is the relative
address of the storage allocated for an array i.e., base is the relative
address of A[low].

3. A two dimensional array is normally stored in one of two forms, either
row-major (row by row) or column-major (column by column).

4. The Fig. 3.22.1 for row-major and column-major are given as :

A [1, 1]
A [1, 2]
A [1, 3]
A [2, 1]
A [2, 2]
A [2, 3]

A [1, 1]
A [2, 1]
A [1, 2]
A [2, 2]
A [1, 3]
A [2, 3]

First Column

Second Column

Third Column

First Row

Second Row

Fig. 3.22.1.

5. In case of a two dimensional array stored in row-major form, the relative
address of A[i1, i2] can be calculated by formula,

3–25 C (CS/IT-Sem-5)Compiler Design

(base + (i1 – low1) * n2 + i2 – low2)* w

where low1 and low2 are lower bounds on the values of i1 and i2 and n2
is the number of values that i2 can take.

6. That is, if high2 is the upper bound on the value of i2 then n2 = [high2 –
low2 + 1].

7. Assuming that i1 and i2 are only values that are not known at compile
time, we can rewrite above expression as :

((i1*n2) + i2)*w + (base – ((low1*n2) + low2) * w)

8. The generalize form of row-major will be,

((...((i1n2 + i2) n3 + i3)...) nk + Ii)*w + base – ((...((

low1 n2 + low2)n3 + low3)...) nk + lowk) * w

PART-8
Declarations Statements.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 3.23. Explain declarative statements with example.

Answer
In the declarative statements the data items along with their data types are
declared.

For example :

S  D {offset:= 0}

D  id : T {enter_tab(id.name, T.type,offset);
offset:= offset + T.width)}

T  integer {T.type:= integer;
T.width:= 8}

T  real {T.type:= real;
T.width:= 8}

T  array[num] of T1 {T.type:= array(num.val, T1.type)
T.width:= num.val × T1.width}

T  *T1 {T.type:= pointer(T.type)
T.width:= 4}

Syntax-Directed Translations 3–26 C (CS/IT-Sem-5)

1. Initially, the value of offset is set to zero. The computation of offset can
be done by using the formula offset = offset + width.

2. In the above translation scheme, T.type, T.width are the synthesized
attributes. The type indicates the data type of corresponding identifier
and width is used to indicate the memory units associated with an
identifier of corresponding type. For instance integer has width 4 and
real has 8.

3. The rule D  id : T is a declarative statements for id declaration. The
enter_tab is a function used for creating the symbol table entry for
identifier along with its type and offset.

4. The width of array is obtained by multiplying the width of each element
by number of elements in the array.

5. The width of pointer types of supposed to be 4.

VERY IMPORTANT QUESTIONS

Following questions are very important. These questions
may be asked in your SESSIONALS as well as

UNIVERSITY EXAMINATION.

Q. 1. Define syntax directed translation. Construct an annotated
parse tree for the expression (4 * 7 + 1) * 2, using the simple
desk calculator grammar.

Ans. Refer Q. 3.1.

Q. 2. Explain attributes. What are synthesized and inherited
attribute ?

Ans. Refer Q. 3.3.

Q. 3. What is postfix translation ? Explain it with suitable
example.

Ans. Refer Q. 3.3.

Q. 4. What is syntax tree ? What are the rules to construct syntax
tree for an expression ?

Ans. Refer Q. 3.8.

Q. 5. What are different ways to write three address code ?
Ans. Refer Q. 3.11.

Q. 6. Write the quadruples, triple and indirect triple for the
following expression :
(x + y) *(y + z) + (x + y + z)

Ans. Refer Q. 3.12.

3–27 C (CS/IT-Sem-5)Compiler Design

Q. 7. How would you convert the following into intermediate
code ? Give a suitable example.

i. Assignment statements
ii. Case statements

Ans. Refer Q. 3.15.

Q. 8. Define backpatching and semantic rules for boolean
expression. Derive the three address code for the following
expression : P < Q or R < S and T < U.

Ans. Refer Q. 3.17.



4–1 C (CS/IT-Sem-5)Compiler Design

Symbol Tables
4
UNIT

CONTENTS
Part-1 : Symbol Tables : .. 4–2C to 4–7C

Data Structure for
Symbol Tables

Part-2 : Representing Scope Information 4–7C to 4–10C

Part-3 : Run-Time Administration : 4–10C to 4–15C
Implementation of Simple Stack
Allocation Scheme

Part-4 : Storage Allocation in 4–15C to 4–16C
Block Structured Language

Part-5 : Error Detection and Recovery : 4–16C to 4–21C
Lexical Phase Errors
Syntactic Phase Errors
Semantic Errors

Symbol Tables 4–2 C (CS/IT-Sem-5)

PART-1
Symbol Tables : Data Structure for Symbol Tables.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 4.1. Discuss symbol table with its capabilities ?

Answer
1. A symbol table is a data structure used by a compiler to keep track of

scope, life and binding information about names.
2. These information are used in the source program to identify the various

program elements, like variables, constants, procedures, and the labels
of statements.

3. A symbol table must have the following capabilities :
a. Lookup : To determine whether a given name is in the table.
b. Insert : To add a new name (a new entry) to the table.
c. Access : To access the information related with the given name.
d. Modify : To add new information about a known name.
e. Delete : To delete a name or group of names from the table.

Que 4.2. What are the symbol table requirements ? What are the

demerits in the uniform structure of symbol table ?

Answer
The basic requirements of a symbol table are as follows :
1. Structural flexibility : Based on the usage of identifier, the symbol

table entries must contain all the necessary information.
2. Fast lookup/search : The table lookup/search depends on the

implementation of the symbol table and the speed of the search should
be as fast as possible.

3. Efficient utilization of space : The symbol table must be able to
grow or shrink dynamically for an efficient usage of space.

4. Ability to handle language characteristics : The characteristic of
a language such as scoping and implicit declaration needs to be handled.

Demerits in uniform structure of symbol table :
1. The uniform structure cannot handle a name whose length exceed

upper bound or limit or name field.
2. If the length of a name is small, then the remaining space is wasted.

4–3 C (CS/IT-Sem-5)Compiler Design

Que 4.3. How names can be looked up in the symbol table ?

Discuss. AKTU 2016-17, Marks 10

Answer
1. The symbol table is searched (looked up) every time a name is

encountered in the source text.

2. When a new name or new information about an existing name is
discovered, the content of the symbol table changes.

3. Therefore, a symbol table must have an efficient mechanism for accessing
the information held in the table as well as for adding new entries to the
symbol table.

4. In any case, the symbol table is a useful abstraction to aid the compiler
to ascertain and verify the semantics, or meaning of a piece of code.

5. It makes the compiler more efficient, since the file does not need to be
re-parsed to discover previously processed information.
For example : Consider the following outline of a C function :
void scopes ()

{
int a, b, c; /* level 1 */
.

 {
int a, b; /* level 2 */

 }
 {

float c, d; /* level 3 */
{

 int m; /* level 4 */

 }
 }
}

The symbol table could be represented by an upwards growing stack as :
i. Initially the symbol table is empty.

ii. After the first three declarations, the symbol table will be

int
int
int

c
b
a

iii. After the second declaration of Level 2.

Symbol Tables 4–4 C (CS/IT-Sem-5)

b
a
c
b
a

int
int
int
int
int

iv. As the control come out from Level 2.
int
int
int

c
b
a

v. When control will enter into Level 3.

d
c
c
b
a

float
float
int
int
int

vi. After entering into Level 4.

m
d
c
c
b
a

int
float
float
int
int
int

vii. On leaving the control from Level 4.

d
c
c
b
a

float
float
int
int
int

viii. On leaving the control from Level 3.
int
int
int

c
b
a

ix. On leaving the function entirely, the symbol table will be again empty.

Que 4.4. What is the role of symbol table ? Discuss different data

structures used for symbol table.
OR

Discuss the various data structures used for symbol table with
suitable example.

4–5 C (CS/IT-Sem-5)Compiler Design

Answer
Role of symbol table :
1. It keeps the track of semantics of variables.

2. It stores information about scope.

3. It helps to achieve compile time efficiency.

Different data structures used in implementing symbol table are :
1. Unordered list :

a. Simple to implement symbol table.

b. It is implemented as an array or a linked list.

c. Linked list can grow dynamically that eliminate the problem of a
fixed size array.

d. Insertion of variable take (1) time , but lookup is slow for large
tables i.e., (n) .

2. Ordered list :
a. If an array is sorted, it can be searched using binary search in

(log 2 n).

b. Insertion into a sorted array is expensive that it takes (n) time on
average.

c. Ordered list is useful when set of names is known i.e., table of
reserved words.

3. Search tree :
a. Search tree operation and lookup is done in logarithmic time.

b. Search tree is balanced by using algorithm of AVL and Red-black
tree.

4. Hash tables and hash functions :
a. Hash table translate the elements in the fixed range of value called

hash value and this value is used by hash function.

b. Hash table can be used to minimize the movement of elements in
the symbol table.

c. The hash function helps in uniform distribution of names in symbol
table.

For example : Consider a part of C program
int x, y;
msg ();

1. Unordered list :

Symbol Tables 4–6 C (CS/IT-Sem-5)

S. No.

1

2

3

Name

x

msg

y

Type

int

function

int

2. Ordered list :

Id Id

Id1 Id1

Id2 Id2

Id3 Id3

Name

x

y

msg

Type

int

int

function

3. Search tree :

x

ymsg

4. Hash table :

Name 

Hash table

Name 1
Data 1
Link1

Name2
Data2
Link2
Name3
Data3
Link3

Storage table

Que 4.5. Describe symbol table and its entries. Also, discuss

various data structure used for symbol table.

AKTU 2015-16, Marks 10

Answer
Symbol table : Refer Q. 4.1, Page 4–2C, Unit-4.
Entries in the symbol table are as follows :
1. Variables :

a. Variables are identifiers whose value may change between
executions and during a single execution of a program.

b. They represent the contents of some memory location.

c. The symbol table needs to record both the variable name as well as
its allocated storage space at runtime.

4–7 C (CS/IT-Sem-5)Compiler Design

2. Constants :
a. Constants are identifiers that represent a fixed value that can never

be changed.
b. Unlike variables or procedures, no runtime location needs to be

stored for constants.
c. These are typically placed right into the code stream by the compiler

at compilation time.
3. Types (user defined) :

a. A user defined type is combination of one or more existing types.

b. Types are accessed by name and reference a type definition
structure.

4. Classes :
a. Classes are abstract data types which restrict access to its members

and provide convenient language level polymorphism.

b. This includes the location of the default constructor and destructor,
and the address of the virtual function table.

5. Records :
a. Records represent a collection of possibly heterogeneous members

which can be accessed by name.

b. The symbol table probably needs to record each of the record’s
members.

Various data structure used for symbol table : Refer Q. 4.4, Page 4–4C,
Unit-4.

PART-2
Representing Scope Information.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 4.6. Discuss how the scope information is represented in a

symbol table.

Answer
1. Scope information characterizes the declaration of identifiers and the

portions of the program where it is allowed to use each identifier.

2. Different languages have different scopes for declarations. For example,
in FORTRAN, the scope of a name is a single subroutine, whereas in

Symbol Tables 4–8 C (CS/IT-Sem-5)

ALGOL, the scope of a name is the section or procedure in which it is
declared.

3. Thus, the same identifier may be declared several times as distinct
names, with different attributes, and with different intended storage
locations.

4. The symbol table is thus responsible for keeping different declaration
of the same identifier distinct.

5. To make distinction among the declarations, a unique number is
assigned to each program element that in return may have its own
local data.

6. Semantic rules associated with productions that can recognize the
beginning and ending of a subprogram are used to compute the number
of currently active subprograms.

7. There are mainly two semantic rules regarding the scope of an
identifier :

a. Each identifier can only be used within its scope.

b. Two or more identifiers with same name and are of same kind
cannot be declared within the same lexical scope.

8. The scope declaration of variables, functions, labels and objects within
a program is shown below :

Scope of variables in statement blocks :

{ int x ;
. . .

}

{ int y ;
. . .

. . .
}

Scope of variable x

Scope of variable y

Scope of formal arguments of functions :

int mul (int n) {
. . .

}
Scope of argument n

Scope of labels :

. . . goto sim;

. . .

}

Scope of label sim

void jumper () {

sim++ ;
. . . goto sim;
. . .

Que 4.7. Write a short note on scoping.

4–9 C (CS/IT-Sem-5)Compiler Design

Answer
1. Scoping is method of keeping variables in different parts of program

distinct from one another.
2. Scoping is generally divided into two classes :

a. Static scoping : Static scoping is also called lexical scoping. In this
scoping a variable always refers to its top level environment.

b. Dynamic scoping : In dynamic scoping, a global identifier refers
to the identifier associated with the most recent environment.

Que 4.8. Differentiate between lexical (or static) scope and

dynamic scope.

Answer

S. No. Lexical scope Dynamic scope

Que 4.9. Distinguish between static scope and dynamic scope.

Briefly explain access to non-local names in static scope.

AKTU 2018-19, Marks 07

Answer

Difference : Refer Q. 4.8, Page 4–9C, Unit-4.
Access to non-local names in static scope :
1. Static chain is the mechanism to implement non-local names (variable)

access in static scope.
2. A static chain is a chain of static links that connects certain activation

record instances in the stack.
3. The static link, static scope pointer, in an activation record instance for

subprogram A points to one of the activation record instances of A’s
static parent.

1. The binding of name
occurrences to declarations
is done statistically at
compile time.

2. The structure of the
program defines the
binding of variables.

3. A free variable in a
procedure gets its value
from the environment in
which the procedure is
defined.

The binding of name occurrences
to declarations is done dynamically
at run-time.

The binding of variables is defined
by the flow of control at the run
time.

A free variable gets its value from
where the procedure is called.

Symbol Tables 4–10 C (CS/IT-Sem-5)

4. When a subroutine at nesting level j has a reference to an object declared
in a static parent at the surrounding scope nested at level k, then j-k
static links forms a static chain that is traversed to get to the frame
containing the object.

5. The compiler generates code to make these traversals over frames to
reach non-local names.
For example : Subroutine A is at nesting level 1 and C at nesting level
3. When C accesses an object of A, 2 static links are traversed to get to
A’s frame that contains that object

Nesting

A

B

C

D

E
Calls

A calls E
E calls B
B calls D
D calls C

Static frames

fp

C
static link

D
static link

B
static link

E
static link

A

PART-3
Run-Time Administration : Implementation of Simple Stack

Allocation Scheme.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 4.10. Draw the format of activation record in stack allocation

and explain each field in it. AKTU 2018-19, Marks 07

Answer
1. Activation record is used to manage the information needed by a single

execution of a procedure.
2. An activation record is pushed into the stack when a procedure is called

and it is popped when the control returns to the caller function.

4–11 C (CS/IT-Sem-5)Compiler Design

Format of activation records in stack allocation :

Return value

Actual parameters

Control link

Access link

Saved machine status

Local data

Temporaries

Fields of activation record are :
1. Return value : It is used by calling procedure to return a value to

calling procedure.

2. Actual parameter : It is used by calling procedures to supply
parameters to the called procedures.

3. Control link : It points to activation record of the caller.

4. Access link : It is used to refer to non-local data held in other activation
records.

5. Saved machine status : It holds the information about status of
machine before the procedure is called.

6. Local data : It holds the data that is local to the execution of the
procedure.

7. Temporaries : It stores the value that arises in the evaluation of an
expression.

Que 4.11. How to sub-divide a run-time memory into code and

data areas ? Explain. AKTU 2016-17, Marks 10

Answer
Sub-division of run-time memory into codes and data areas is shown in
Fig. 4.11.1.

Code
Static
Heap

Free Memory

Stack

Fig. 4.11.1.

Symbol Tables 4–12 C (CS/IT-Sem-5)

1. Code : It stores the executable target code which is of fixed size and do
not change during compilation.

2. Static allocation :

a. The static allocation is for all the data objects at compile time.

b. The size of the data objects is known at compile time.

c. The names of these objects are bound to storage at compile time
only and such an allocation of data objects is done by static allocation.

d. In static allocation, the compiler can determine amount of storage
required by each data object. Therefore, it becomes easy for a
compiler to find the address of these data in the activation record.

e. At compile time, compiler can fill the addresses at which the target
code can find the data on which it operates.

3. Heap allocation : There are two methods used for heap management :

a. Garbage collection method :

i. When all access path to a object are destroyed but data object
continue to exist, such type of objects are said to be garbaged.

ii. The garbage collection is a technique which is used to reuse
that object space.

iii. In garbage collection, all the elements whose garbage collection
bit is ‘on’ are garbaged and returned to the free space list.

b. Reference counter :

i. Reference counter attempt to reclaim each element of heap
storage immediately after it can no longer be accessed.

ii. Each memory cell on the heap has a reference counter
associated with it that contains a count of number of values
that point to it.

iii. The count is incremented each time a new value point to the
cell and decremented each time a value ceases to point to it.

4. Stack allocation :

a. Stack allocation is used to store data structure called activation
record.

b. The activation records are pushed and popped as activations begins
and ends respectively.

4–13 C (CS/IT-Sem-5)Compiler Design

c. Storage for the locals in each call of the procedure is contained in
the activation record for that call. Thus, locals are bound to fresh
storage in each activation, because a new activation record is pushed
onto the stack when call is made.

d. These values of locals are deleted when the activation ends.

Que 4.12. Why run-time storage management is required ? How

simple stack implementation is implemented ?

Answer
Run-time storage management is required because :

1. A program needs memory resources to execute instructions.

2. The storage management must connect to the data objects of programs.

3. It takes care of memory allocation and deallocation while the program is
being executed.

Simple stack implementation is implemented as :

1. In stack allocation strategy, the storage is organized as stack. This stack
is also called control stack.

2. As activation begins the activation records are pushed onto the stack
and on completion of this activation the corresponding activation records
can be popped.

3. The locals are stored in the each activation record. Hence, locals are
bound to corresponding activation record on each fresh activation.

4. The data structures can be created dynamically for stack allocation.

Que 4.13. Discuss the following parameter passing techniques

with suitable example.
i. Call by name
ii. Call by reference

OR
Explain the various parameter passing mechanisms of a high level

language. AKTU 2018-19, Marks 07

Answer
i. Call by name :

1. In call by name, the actual parameters are substituted for formals
in all the places where formals occur in the procedure.

Symbol Tables 4–14 C (CS/IT-Sem-5)

2. It is also referred as lazy evaluation because evaluation is done on
parameters only when needed.

For example :

main (){

int n1=10;n2=20;

printf(“n1: %d, n2: %d\n”, n1, n2);

swap(n1,n2);

printf(“n1: %d, n2: %d\n”, n1, n2); }

swap(int c ,int d){

int t;

t=c;

c=d;

d=t;

printf(“n1: %d, n2: %d\n”, n1, n2);

}

Output : 10 20

20 10

20 10

ii. Call by reference :

1. In call by reference, the location (address) of actual arguments is
passed to formal arguments of the called function. This means by
accessing the addresses of actual arguments we can alter them
within the called function.

2. In call by reference, alteration to actual arguments is possible within
called function; therefore the code must handle arguments carefully
else we get unexpected results.

For example :

#include <stdio.h>

void swapByReference(int*, int*); /* Prototype */

int main() /* Main function */

{

int n1 = 10; n2 = 20;

4–15 C (CS/IT-Sem-5)Compiler Design

/* actual arguments will be altered */

swapByReference(&n1, &n2);

printf(“n1: %d, n2: %d\n”, n1, n2);

}

void swapByReference(int *a, int *b)

{

int t;

t = *a; *a = *b; *b = t;

}

Output : n1: 20, n2: 10

PART-4
Storage Allocation in Block Structured Language.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 4.14. Explain symbol table organization using hash tables.

With an example show the symbol table organization for block
structured language.

Answer
1. Hashing is an important technique used to search the records of symbol

table. This method is superior to list organization.

2. In hashing scheme, a hash table and symbol table are maintained.

3. The hash table consists of k entries from 0, 1 to k – 1. These entries are
basically pointers to symbol table pointing to the names of symbol table.

4. To determine whether the ‘Name’ is in symbol table, we used a hash
function ‘h’ such that h(name) will result any integer between 0 to
k – 1. We can search any name by position = h(name).

5. Using this position, we can obtain the exact locations of name in symbol
table.

Symbol Tables 4–16 C (CS/IT-Sem-5)

6. The hash table and symbol table are shown in Fig. 4.14.1.

hash table Name Info hash link
Symbol table

Sum

i

j

avg

....

Sum

i

j

avg
....

Fig. 4.14.1.

7. The hash function should result in uniform distribution of names in
symbol table.

8. The hash function should have minimum number of collision.

PART-5
Error Detection and Recovery : Lexical Phase Errors, Syntactic

Phase Errors, Semantic Errors.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 4.15. Define error recovery. What are the properties of error

message ? Discuss the goals of error handling.

Answer
Error recovery : Error recovery is an important feature of any compiler,
through which compiler can read and execute the complete program even it
have some errors.

4–17 C (CS/IT-Sem-5)Compiler Design

Properties of error message are as follows :

1. Message should report the errors in original source program rather
than in terms of some internal representation of source program.

2. Error message should not be complicated.

3. Error message should be very specific and should fix the errors at correct
positions.

4. There should be no duplicacy of error messages, i.e., same error should
not be reported again and again.

Goals of error handling are as follows :

1. Detect the presence of errors and produce “meaningful” diagnostics.

2. To recover quickly enough to be able to detect subsequent errors.

3. Error handling components should not significantly slow down the
compilation of syntactically correct programs.

Que 4.16. What are lexical phase errors, syntactic phase errors

and semantic phase errors ? Explain with suitable example.

AKTU 2015-16, Marks 10

Answer

1. Lexical phase error :

a. A lexical phase error is a sequence of character that does not match
the pattern of token i.e., while scanning the source program, the
compiler may not generate a valid token from the source program.

b. Reasons due to which errors are found in lexical phase are :

i. The addition of an extraneous character.

ii. The removal of character that should be presented.

iii. The replacement of a character with an incorrect character.

iv. The transposition of two characters.

For example :

i. In Fortran, an identifier with more than 7 characters long is a
lexical error.

ii. In Pascal program, the character ~, & and @ if occurred is a
lexical error.

2. Syntactic phase errors (syntax error) :

a. Syntactic errors are those errors which occur due to the mistake
done by the programmer during coding process.

Symbol Tables 4–18 C (CS/IT-Sem-5)

b. Reasons due to which errors are found in syntactic phase are :

i. Missing of semicolon

ii. Unbalanced parenthesis and punctuation

For example : Let us consider the following piece of code :

int x;

int y //Syntax error

In example, syntactic error occurred because of absence of semicolon.

3. Semantic phase errors :

a. Semantic phase errors are those errors which occur in declaration
and scope in a program.

b. Reason due to which errors are found :

i. Undeclared names

ii. Type incompatibilities

iii. Mismatching of actual arguments with the formal arguments.

For example : Let us consider the following piece of code :

scanf(“%f%f”, a, b);

In example, a and b are semantic error because scanf uses address of
the variables as &a and &b.

4. Logical errors :

a. Logical errors are the logical mistakes founded in the program
which is not handled by the compiler.

b. In these types of errors, program is syntactically correct but does
not operate as desired.

For example :

Let consider following piece of code :

x = 4;

y = 5;

average = x + y/2;

The given code do not give the average of x and y because BODMAS
property is not used properly.

Que 4.17. What do you understand by lexical error and syntactic

error ? Also, suggest methods for recovery of errors.

4–19 C (CS/IT-Sem-5)Compiler Design

OR
Explain logical phase error and syntactic phase error. Also suggest

methods for recovery of error. AKTU 2017-18, Marks 10

Answer

Lexical and syntactic error : Refer Q. 4.16, Page 4–17C, Unit-4.

Various error recovery methods are :

1. Panic mode recovery :

a. This is the simplest method to implement and used by most of the
parsing methods.

b. When parser detect an error, the parser discards the input symbols
one at a time until one of the designated set of synchronizing token
is found.

c. Panic mode correction often skips a considerable amount of input
without checking it for additional errors. It gives guarantee not to
go in infinite loop.

For example :

Let consider a piece of code :

a = b + c;

d = e + f;

By using panic mode it skips a = b + c without checking the error in
the code.

2. Phrase-level recovery :

a. When parser detects an error the parser may perform local
correction on remaining input.

b. It may replace a prefix of the remaining input by some string that
allows parser to continue.

c. A typical local correction would replace a comma by a semicolon,
delete an extraneous semicolon or insert a missing semicolon.

For example :

Let consider a piece of code

while (x > 0) y = a + b;

In this code local correction is done by phrase-level recovery by
adding ‘do’ and parsing is continued.

Symbol Tables 4–20 C (CS/IT-Sem-5)

3. Error production : If error production is used by the parser, we can
generate appropriate error message and parsing is continued.

For example :

Let consider a grammar

E  + E|– E| * A|/A

A  E

When error production encounters * A, it sends an error message
to the user asking to use ‘*’ as unary or not.

4. Global correction :

a. Global correction is a theoretical concept.

b. This method increases time and space requirement during parsing.

Que 4.18. Explain in detail the error recovery process in operator

precedence parsing method. AKTU 2018-19, Marks 07

Answer

Error recovery in operator precedence parsing :

1. There are two points in the parsing process at which an operator-
precedence parser can discover syntactic error :

a. If no precedence relation holds between the terminal on top of the
stack and the current input.

b. If a handle has been found, but there is no production with this
handle as a right side.

2. The error checker does the following errors :

a. Missing operand

b. Missing operator

c. No expression between parentheses

d. These error diagnostic issued at handling of errors during reduction.

3. During handling of shift/reduce errors, the diagnostic’s issues are :

4–21 C (CS/IT-Sem-5)Compiler Design

a. Missing operand

b. Unbalanced right parenthesis

c. Missing right parenthesis

d. Missing operators

VERY IMPORTANT QUESTIONS

Following questions are very important. These questions
may be asked in your SESSIONALS as well as

UNIVERSITY EXAMINATION.

Q. 1. What are the symbol table requirements ? What are the
demerits in the uniform structure of symbol table ?

Ans. Refer Q. 4.2.

Q. 2. What is the role of symbol table ? Discuss different data
structures used for symbol table.

Ans. Refer Q. 4.4.

Q. 3. Describe symbol table and its entries. Also, discuss various
data structure used for symbol table.

Ans. Refer Q. 4.5.

Q. 4. Distinguish between static scope and dynamic scope. Briefly
explain access to non-local names in static scope.

Ans. Refer Q. 4.9.

Q. 5. Draw the format of activation record in stack allocation
and explain each field in it.

Ans. Refer Q. 4.10.

Q. 6. Explain the various parameter passing mechanisms of a
high level language.

Ans. Refer Q. 4.13.

Q. 7. Define error recovery. What are the properties of error
message ? Discuss the goals of error handling.

Ans. Refer Q. 4.15.

Q. 8. What are lexical phase errors, syntactic phase errors and
semantic phase errors ? Explain with suitable example.

Ans. Refer Q. 4.16.

Symbol Tables 4–22 C (CS/IT-Sem-5)

Q. 9. Explain logical phase error and syntactic phase error. Also
suggest methods for recovery of error.

Ans. Refer Q. 4.17.

Q. 10. Explain in detail the error recovery process in operator
precedence parsing method.

Ans. Refer Q. 4.18.



5–1 C (CS/IT-Sem-5)Compiler Design

CONTENTS
Part-1 : Code Generation : 5–2C to 5–3C

Design Issues

Part-2 : The Target Language 5–3C to 5–4C
Address in Target Code

Part-3 : Basic Blocks and Flow Graphs 5–4C to 5–10C
Optimization of Basic Blocks
Code Generator

Part-4 : Machine Independent 5–10C to 5–16C
Optimizations
Loop Optimization

Part-5 : DAG Representation 5–16C to 5–22C
of Basic Blocks

Part-6 : Value Numbers and 5–22C to 5–24C
Algebraic Laws
Global Data Flow Analysis

Code Generation
5
UNIT

Code Generation 5–2 C (CS/IT-Sem-5)

PART-1
Code Generation : Design Issues.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 5.1. What is code generation ? Discuss the design issues of

code generation.

Answer
1. Code generation is the final phase of compiler.

2. It takes as input the Intermediate Representation (IR) produced by the
front end of the compiler, along with relevant symbol table information,
and produces as output a semantically equivalent target program as
shown in Fig. 5.1.1.

Fig. 5.1.1. Position of code generator.

Front
End

Intermediate
Code

Code
Optimizer

Intermediate
Code

Code
Generator

Target

program

Design issues of code generator are :
1. Input to the code generator :

a. The input to the code generator is the intermediate representation
of the source program produced by the front end, along with
information in the symbol table.

b. IR includes three address representations and graphical
representations.

2. The target program :
a. The instruction set architecture of the target machine has a

significant impact on the difficulty of constructing a good code
generator that produces high quality machine code.

b. The most common target machine architectures are RISC
(Reduced Instruction Set Computer), CISC (Complex Instruction
Set Computer), and stack based.

3. Instruction selection :
a. The code generator must map the IR program into a code sequence

that can be executed by the target machine.

5–3 C (CS/IT-Sem-5)Compiler Design

b. If the IR is high level, the code generator may translate each IR
statement into a sequence of machine instructions using code
templates.

4. Register allocation :
a. A key problem in code generation is deciding what values to hold

in which registers on the target machine do not have enough
space to hold all values.

b. Values that are not held in registers need to reside in memory.
Instructions involving register operands are invariably shorter
and faster than those involving operands in memory, so efficient
utilization of registers is particularly important.

c. The use of registers is often subdivided into two subproblems :

i. Register allocation, during which we select the set of variables
that will reside in registers at each point in the program.

ii. Register assignment, during which we pick the specific register
that a variable will reside in.

5. Evaluation order :
a. The order in which computations are performed can affect the

efficiency of the target code.

b. Some computation orders require fewer registers to hold
intermediate results than others.

PART-1
Code Generation : Design Issues.

PART-2
The Target Language, Address in Target Code.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 5.2. Discuss addresses in the target code.

Answer
1. Addresses in the target code show how names in the IR can be converted

into addresses in the target code by looking at code generation for
simple procedure calls and returns using static and stack allocation.

2. Addresses in the target code represent executing program runs in its
own logical address space that was partitioned into four code and data
areas :
a. A statically determined area code that holds the executable target

code. The size of the target code can be determined at compile
time.

Code Generation 5–4 C (CS/IT-Sem-5)

b. A statically determined data area static for holding global constants
and other data generated by the compiler. The size of the global
constants and compiler data can also be determined at compile time.

c. A dynamically managed area heap for holding data objects that
are allocated and freed during program execution. The size of the
heap cannot be determined at compile time.

d. A dynamically managed area stack for holding activation records
as they are created and destroyed during procedure calls and
returns. Like the heap, the size of the stack cannot be determined
at compile time.

PART-3
Basic Blocks and Flow Graphs, Optimization of Basic

Blocks, Code Generator.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 5.3. Write an algorithm to partition a sequence of three

address statements into basic blocks. AKTU 2016-17, Marks 10

Answer
The algorithm for construction of basic block is as follows :
Input : A sequence of three address statements.
Output : A list of basic blocks with each three address statements in exactly
one block.
Method :
1. We first determine the set of leaders, the first statement of basic block.

The rules we use are given as :
a. The first statement is a leader.
b. Any statement which is the target of a conditional or unconditional

goto is a leader.
c. Any statement which immediately follows a conditional goto is a

leader.
2. For each leader construct its basic block, which consist of leader and all

statements up to the end of program but not including the next leader.
Any statement not placed in the block can never be executed and may
now be removed, if desired.

5–5 C (CS/IT-Sem-5)Compiler Design

Que 5.4. Explain flow graph with example.

Answer
1. A flow graph is a directed graph in which the flow control information is

added to the basic blocks.
2. The nodes to the flow graph are represented by basic blocks.
3. The block whose leader is the first statement is called initial blocks.
4. There is a directed edge from block Bi – 1 to block Bi if Bi immediately

follows Bi – 1 in the given sequence. We can say that Bi – 1 is a predecessor
of Bi.

For example : Consider the three address code as :
1. prod := 0 2. i := 1
3. t1 := 4 * i 4. t2 := a[t1] /* computation of a[i] */
5. t3 := 4 * i 6. t4 := b[t3] /* computation of b[i] */
7. t5 := t2 * t4 8. t6 := prod + t5

9. prod := t6 10. t7 := i + 1
11. i := t7 12. if i <= 10 goto (3)
The flow graph for the given code can be drawn as follows :

prod : = 0
i : = 1

t
t
t
t
t
t
prod
t
i
if i<

1

2

3

4

5

6

7

:= 4 * i
:= a[t]
:= 4 * i
:= b[t]
:= t * t
:= prod + t
:= t
:= i + 1
:= t
 = 10 goto (3)

1

3

2 4

5

6

7

Block B : the
initial block

1

Fig. 5.4.1. Flow graph.

Que 5.5. What is loop ? Explain what constitute a loop in a flow

graph.

Code Generation 5–6 C (CS/IT-Sem-5)

Answer
Loop is a collection of nodes in the flow graph such that :

1. All such nodes are strongly connected i.e., there is always a path from
any node to any other node within that loop.

2. The collection of nodes has unique entry. That means there is only one
path from a node outside the loop to the node inside the loop.

3. The loop that contains no other loop is called inner loop.

Following term constitute a loop in flow graph :
1. Dominators :

a. In control flow graphs, a node d dominates a node n if every path
from the entry node to n must go through d. This is denoted as d
dom n.

b. By definition, every node dominates itself.
c. A node d strictly dominates a node n if d dominates n and d is not

equal to n.
d. The immediate dominator (or idom) of a node n is the unique node

that strictly dominates n but does not strictly dominate any other
node that strictly dominates n. Every node, except the entry node,
has an immediate dominator.

e. A dominator tree is a tree where each node’s children are those
nodes it immediately dominates. Because the immediate dominator
is unique, it is a tree. The start node is the root of the tree.

2. Natural loops :
a. The natural loop can be defined by a back edge n  d such that

there exists a collection of all the nodes that can reach to n
without going through d and at the same time d can also be
added to this collection.

b. Loop in a flow graph can be denoted by n  d such that d dom n.
c. These edges are called back edges and for a loop there can be

more than one back edge.
d. If there is p  q then q is a head and p is a tail and head dominates

tail.
3. Pre-header :

a. The pre-header is a new block created such that successor of this
block is the header block.

b. All the computations that can be made before the header block
can be made before the pre-header block.

5–7 C (CS/IT-Sem-5)Compiler Design

header header

Pre-header

B0 B0

Fig. 5.5.1. Pre-header.

4. Reducible flow graph :
a. A flow graph G is reducible graph if an only if we can partition

the edges into two disjointed groups i.e., forward edges and backward
edges.

b. These edges have following properties :
i. The forward edge forms an acyclic graph.
ii. The backward edges are such edges whose heads dominate

their tails.

c. The program structure in which there is exclusive use of if-then,
while-do or goto statements generates a flow graph which is
always reducible.

Que 5.6. Discuss in detail the process of optimization of basic

blocks. Give an example. AKTU 2016-17, Marks 10

OR
What are different issues in code optimization ? Explain it with
proper example.

Answer
Different issues in code optimization are :
1. Function preserving transformation : The function preserving

transformations are basically divided into following types :
a. Common sub-expression elimination :

i. A common sub-expression is nothing but the expression which
is already computed and the same expression is used again
and again in the program.

ii. If the result of the expression not changed then we eliminate
computation of same expression again and again.

Code Generation 5–8 C (CS/IT-Sem-5)

For example :
Before common sub-expression elimination :
a = t * 4 – b + c;
........................
........................
m = t * 4 – b + c;
........................
........................
n = t * 4 – b + c;
After common sub-expression elimination :
temp = t * 4 – b + c;
a = temp;
........................
........................
m = temp;
........................
........................
n = temp;

iii. In given example, the equation a = t * 4 – b + c is occurred most
of the times. So it is eliminated by storing the equation into
temp variable.

b. Dead code elimination :
i. Dead code means the code which can be emitted from program

and still there will be no change in result.
ii. A variable is live only when it is used in the program again and

again. Otherwise, it is declared as dead, because we cannot
use that variable in the program so it is useless.

iii. The dead code occurred during the program is not introduced
intentionally by the programmer.
For example :
Define False = 0
!False = 1
If(!False)
{
........................
........................
}

iv. If false becomes zero, is guaranteed then code in ‘IF’ statement
will never be executed. So, there is no need to generate or
write code for this statement because it is dead code.

c. Copy propagation :
i. Copy propagation is the concept where we can copy the result

of common sub-expression and use it in the program.

ii. In this technique the value of variable is replaced and
computation of an expression is done at the compilation time.

5–9 C (CS/IT-Sem-5)Compiler Design

For example :
pi = 3.14;

r = 5;

Area = pi * r * r;

Here at the compilation time the value of pi is replaced by 3.14
and r by 5.

d. Constant folding (compile time evaluation) :
i. Constant folding is defined as replacement of the value of one

constant in an expression by equivalent constant value at the
compile time.

ii. In constant folding all operands in an operation are constant.
Original evaluation can also be replaced by result which is also
a constant.

For example : a = 3.14157/2 can be replaced by a = 1.570785
thereby eliminating a division operation.

2. Algebraic simplification :
a. Peephole optimization is an effective technique for algebraic

simplification.

b. The statements such as

x : = x + 0

or x : = x * 1

can be eliminated by peephole optimization.

Que 5.7. Write a short note on transformation of basic blocks.

Answer
Transformation :
1. A number of transformations can be applied to basic block without

changing set of expression computed by the block.

2. Transformation helps us in improving quality of code and act as optimizer.

3. There are two important classes as local transformation that can be
applied to the basic block :

a. Structure preserving transformation : They are as follows :

i. Common sub-expression elimination : Refer Q. 5.6,
Page 5–7C, Unit-5.

ii. Dead code elimination : Refer Q. 5.6, Page 5–7C, Unit-5.

iii. Interchange of statement : Suppose we have a block with
the two adjacent statements,

temp1 = a + b

Code Generation 5–10 C (CS/IT-Sem-5)

temp2 = m + n

Then we can interchange the two statements without affecting
the value of the block if and only if neither ‘m’ nor ‘n’ is
temporary variable temp1 and neither ‘a’ nor ‘b’ is temporary
variable temp2. From the given statements we can conclude
that a normal form basic block allow us for interchanging all
the statements if they are possible.

b. Algebraic transformation : Refer Q. 5.6, Page 5–7C, Unit-5.

PART-4
Machine Independent Optimizations, Loop Optimization.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 5.8. What is code optimization ? Discuss the classification of

code optimization.

Answer
Code optimization :
1. The code optimization refers to the techniques used by the compiler to

improve the execution efficiency of generated object code.

2. It involves a complex analysis of intermediate code and performs various
transformations but every optimizing transformation must also
preserve the semantic of the program.

Classification of code optimization :

Code optimization

Machine dependent Machine independent

Fig. 5.8.1. Classification of code optimization.

1. Machine dependent : The machine dependent optimization can be
achieved using following criteria :

a. Allocation of sufficient number of resources to improve the execution
efficiency of the program.

b. Using immediate instructions wherever necessary.

5–11 C (CS/IT-Sem-5)Compiler Design

c. The use of intermix instructions along with the data increases the
speed of execution.

2. Machine independent : The machine independent optimization can
be achieved using following criteria :
a. The code should be analyzed completely and use alternative

equivalent sequence of source code that will produce a minimum
amount of target code.

b. Use appropriate program structure in order to improve the
efficiency of target code.

c. By eliminating the unreachable code from the source program.
d. Move two or more identical computations at one place and make

use of the result instead of each time computing the expressions.

Que 5.9. Explain local optimization.

Answer

1. Local optimization is a kind of optimization in which both the analysis
and the transformations are localized to a basic block.

2. The transformations in local optimization are called as local
transformations.

3. The name of transformation is usually prefixed with ‘local’ while
referring to the local transformation.

4. There are “local” transformations that can be applied to program to
attempt an improvement.

For example : The elimination of common sub-expression, provided A
is not an alias for B or C, the assignments :

A := B + C + D

E := B + C + F

might be evaluated as

T1 := B + C
A := T1 + D
E := T1 + F

In the given example, B + C is stored in T1 which act as local optimization
of common sub-expression.

Que 5.10. Explain what constitute a loop in a flow graph and how

will you do loop optimizations in code optimization of a compiler.

AKTU 2018-19, Marks 07

OR
Write a short note on loop optimization.

AKTU 2017-18, Marks 05

Code Generation 5–12 C (CS/IT-Sem-5)

Answer
Following term constitute a loop in flow graph : Refer Q. 5.5,
Page 5–5C, Unit-5.

Loop optimization is a process of increasing execution time and reducing
the overhead associated with loops.

The loop optimization is carried out by following methods :
1. Code motion :

a. Code motion is a technique which moves the code outside the
loop.

b. If some expression in the loop whose result remains unchanged
even after executing the loop for several times, then such an
expression should be placed just before the loop (i.e., outside the
loop).

c. Code motion is done to reduce the execution time of the program.

2. Induction variables :
a. A variable x is called an induction variable of loop L if the value of

variable gets changed every time.

b. It is either decremented or incremented by some constant.

3. Reduction in strength :
a. In strength reduction technique the higher strength operators

can be replaced by lower strength operators.

b. The strength of certain operator is higher than other.

c. The strength reduction is not applied to the floating point
expressions because it may yield different results.

4. Loop invariant method : In loop invariant method, the computation
inside the loop is avoided and thereby the computation overhead on
compiler is avoided.

5. Loop unrolling : In this method, the number of jumps and tests can
be reduced by writing the code two times.

For example :

int i = 1;
while(i<=100)
{

a[i]=b[i];
i++;

}

int i = 1;
while(i<=100)
{

a[i]=b[i];
i++;
a[i]=b[i];
i++ ;

}

Can be written as

6. Loop fusion or loop jamming : In loop fusion method, several loops
are merged to one loop.

5–13 C (CS/IT-Sem-5)Compiler Design

For example :

for i:=1 to n do
for j:=1 to m do
a[i,j]:=10

for i:=1 to n*m do
a[i]:=10

Can be written as

Que 5.11. Consider the following three address code segments :

PROD : = 0
1. l : = 1
2. T1 : = 4*l
3. T2 : = addr(A) – 4
4. T3 : = T2 [T1]
5. T4 : = addr(B) – 4
6. T5 : = T4[T1]
7. T6 : = T3*T5
8. PROD : = PROD + T6
9. l : = l + 1
10. If l < = 20 goto (3)
a. Find the basic blocks and flow graph of above sequence.
b. Optimize the code sequence by applying function preserving

transformation optimization technique.

AKTU 2017-18, Marks 10

OR
Consider the following sequence of three address codes :
1. Prod : = 0
2. I : = 1
3. T1 : = 4*I
4. T2 : = addr (A) – 4
5. T3 : = T2 [T1]
6. T4 : = addr (B) – 4
7. T5 : = T4 [T1]
8. T6 : = T3*T5
9. Prod : = Prod + T6
10. I = I + 1
11. If I <= 20 goto (3)

Perform loop optimization. AKTU 2015-16, Marks 10

Answer
a. Basic blocks and flow graph :
1. As first statement of program is leader statement.

 PROD = 0 is a leader.

2. Fragmented code represented by two blocks is shown below :

Code Generation 5–14 C (CS/IT-Sem-5)

PROD = 0
I = 1

T = addr(A) – 42

T = addr(B) – 44

T = 4 * I1

T = T [T]3 12

T = T [T]5 4 1
T = T * T6 3 5

PROD = PROD + T6
I = I + 1
If I <= 20 goto B2

B1

B2

Fig. 5.11.1.
b. Function preserving transformation :
1. Common sub-expression elimination : No any block has any sub

expression which is used two times. So, no change in flow graphs.
2. Copy propagation : No any instruction in the block B2 is direct

assignment i.e., in the form of x = y. So, no change in flow graph and
basic block.

3. Dead code elimination : No any instruction in the block B2 is dead. So,
no change in flow graph and basic block.

4. Constant folding : No any constant expression is present in basic
block. So, no change in flow graph and basic block.

Loop optimization :
1. Code motion : In block B2 we can see that value of T2 and T4 is calculated

every time when loop is executed. So, we can move these two instructions
outside the loop and put in block B1 as shown in Fig. 5.11.2.

PROD = 0
I = 1

T = 4 * I1
T = T [T]3 12

T = T [T]5 4 1

T = T * T6 3 5
PROD = PROD + T6
I = I + 1
If I <= 20 goto B2

B1

B2

Fig. 5.11.2.

T = addr(A) – 42

T = addr(B) – 44

5–15 C (CS/IT-Sem-5)Compiler Design

2. Induction variable : A variable I and T1 are called an induction variable
of loop L because every time the variable I change the value of T1 is also
change. To remove these variables we use other method that is called
reduction in strength.

3. Reduction in strength : The values of I varies from 1 to 20 and value
T1 varies from (4, 8, ... , 80).

Block B2 is now given as

T1 = 4 * I  In block B1

T = T + 41 1 B2

Now final flow graph is given as

PROD = 0
T = 4 * I1
T = addr(A) – 42

T = addr(B) – 44

T = T + 41 1

T = T [T]3 2 1
T = T [T]5 4 1
T = T * T6 3 5

PROD = PROD + T6
if T < = 80 goto B1 2

B1

B2

Fig. 5.11.3

Que 5.12. Write short notes on the following with the help of

example :
i. Loop unrolling
ii. Loop jamming
iii. Dominators

iv. Viable prefix AKTU 2018-19, Marks 07

Answer
i. Loop unrolling : Refer Q. 5.10, Page 5–11C, Unit-5.
ii. Loop jamming : Refer Q. 5.10, Page 5–11C, Unit-5.
iii. Dominators : Refer Q. 5.5, Page 5–5C, Unit-5.
For example : In the flow graph,

Code Generation 5–16 C (CS/IT-Sem-5)

Fig. 5.12.1.

1

3

4

7

8

2

5

9 10

6

1

4

2

5

3

7

6

8

9 10

() Flow graph a

 () Dominator treeb

Initial Node, Node1 dominates every Node.

Node 2 dominates itself. Node 3 dominates all but 1 and 2. Node 4 dominates
all but 1,2 and 3.

Node 5 and 6 dominates only themselves, since flow of control can skip
around either by go in through the other. Node 7 dominates 7, 8, 9 and 10.
Node 8 dominates 8, 9 and 10.
Node 9 and 10 dominates only themselves.
iv. Viable prefix : Viable prefixes are the prefixes of right sentential forms

that can appear on the stack of a shift-reduce parser.
For example :
Let : S  x1x2x3x4
A  x1 x2
Let w = x1x2x3
SLR parse trace :

STACK INPUT

$ x1x2x3
$ x1 x2x3
$ x1x2 x3
$A x3
$AX3 $
...

As we see, x1x2x3 will never appear on the stack. So, it is not a viable
prefix.

PART-5
DAG Representation of Basic Blocks.

5–17 C (CS/IT-Sem-5)Compiler Design

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 5.13. What is DAG ? What are its advantages in context of

optimization ?
OR

Write a short note on direct acyclic graph.
AKTU 2017-18, Marks 05

Answer
DAG :

1. The abbreviation DAG stands for Directed Acyclic Graph.

2. DAGs are useful data structure for implementing transformations on
basic blocks.

3. A DAG gives picture of how the value computed by each statement in
the basic block is used in the subsequent statement of the block.

4. Constructing a DAG from three address statement is a good way of
determining common sub-expressions within a block.

5. A DAG for a basic block has following properties :

a. Leaves are labeled by unique identifier, either a variable name or
constants.

b. Interior nodes are labeled by an operator symbol.

c. Nodes are also optionally given a sequence of identifiers for labels.

6. Since, DAG is used in code optimization and output of code optimization
is machine code and machine code uses register to store variable used
in the source program.

Advantage of DAG :
1. We automatically detect common sub-expressions with the help of

DAG algorithm.
2. We can determine which identifiers have their values used in the

block.
3. We can determine which statements compute values which could be

used outside the block.

Que 5.14. What is DAG ? How DAG is created from three address

code ? Write algorithm for it and explain it with a relevant example.

Code Generation 5–18 C (CS/IT-Sem-5)

Answer
DAG : Refer Q. 5.13, Page 5–17C, Unit-5.
Algorithm :

Input : A basic block.

Output : A DAG with label for each node (identifier).

Method :

1. Create nodes with one or two left and right children.

2. Create linked list of attached identifiers for each node.

3. Maintain all identifiers for which a node is associated.

4. Node (identifier) represents value that identifier has the current point
in DAG construction process. Symbol table store the value of node
(identifier).

5. If there is an expression of the form x = y op z then DAG contain “op”
as a parent node and node(y) as a left child and node(z) as a right child.

For example :
Given expression : a * (b – c) + (b – c) * d

The construction of DAG with three address code will be as follows :

t = b – c1Step 1 :

t = (b – c) * d 2Step 2 :

–
t1

b c

*
t2

–

b c

d

t = a * (b – c) 3Step 3 : *
t3

–

cb

a

t = a * (b – c) + (b – c) * d 4Step 4 : +
t4

*

ad

*

–

b c

Que 5.15. How DAG is different from syntax tree ? Construct the

DAG for the following basic blocks :

5–19 C (CS/IT-Sem-5)Compiler Design

a := b + c

b := b – d

c := c + d

e = b + c

Also, explain the key application of DAG. AKTU 2015-16, Marks 15

Answer

DAG v/s Syntax tree :
1. Directed Acyclic Graph is a data structure for transformations on the

basic block. While syntax tree is an abstract representation of the
language constructs.

2. DAG is constructed from three address statement while syntax tree is
constructed directly from the expression.

DAG for the given code is :

a +
+b

e
c

b0

c0 d0

+
+

Fig. 5.15.1.

1. The two occurrences of sub-expressions b + c compute the same value.

2. Value computed by a and e are same.

Applications of DAG :
1. Scheduling : Directed acyclic graphs representations of partial orderings

have many applications in scheduling for systems of tasks.

2. Data processing networks : A directed acyclic graph may be used to
represent a network of processing elements.

3. Data compression :Directed acyclic graphs may also be used as a
compact representation of a collection of sequences. In this type of
application, one finds a DAG in which the paths form the sequences.

4. It helps in finding statement that can be recorded.

Que 5.16. Define a directed acyclic graph. Construct a DAG and

write the sequence of instructions for the expression :

a + a * (b – c) + (b – c) * d. AKTU 2016-17, Marks 15

Code Generation 5–20 C (CS/IT-Sem-5)

Answer

Directed acyclic graph : Refer Q. 5.13, Page 5–17C, Unit-5.

Numerical :
Given expression : a + a * (b – c) + (b – c) * d

The construction of DAG with three address code will be as follows :

t = b – c1Step 1 : –
t1

b c

t = (b – c) * d 2Step 2 : *
t2

–

b c

d

t = a * (b – c) 3Step 3 : *
t3

–

cb

a

t = a * (b – c) + (b – c) * d 4Step 4 : +
t4

*

ad

*

–

b c

t = a + a * (b – c) + (b – c) * d 5Step 5 :

+

*

ad

*

–

b c

+
t5

a

Que 5.17. How would you represent the following equation using

DAG ?

a = b * – c + b * – c AKTU 2018-19, Marks 07

5–21 C (CS/IT-Sem-5)Compiler Design

Answer
Code representation using DAG of equation : a = b * – c + b *– c

c

–
t1

t c1 = –
Step 1 :

b –

c

Step 2 : t2
t b t2 1= *

*

b –

c

Step 3 :

t3

t t t3 2 2= +

+

*

+

b

a

–

=Step 4 :
t a4 =

c

*

t4

Que 5.18. Give the algorithm for the elimination of local and global

common sub-expressions algorithm with the help of example.

AKTU 2017-18, Marks 10

Answer
Algorithm for elimination of local common sub-expression : DAG
algorithm is used to eliminate local common sub-expression.

DAG : Refer Q. 5.13, Page 5–17C, Unit-5.

Code Generation 5–22 C (CS/IT-Sem-5)

Algorithm for elimination of global common sub-expressions :

1. An expression is defined at the point where it is assigned a value and
killed when one of its operands is subsequently assigned a new value.

2. An expression is available at some point p in a flow graph if every path
leading to p contains a prior definition of that expression which is not
subsequently killed.

3. Following expressions are used :

a. avail[B] = set of expressions available on entry to block B

b. exit[B] = set of expressions available on exit from B

c. killed[B] = set of expressions killed in B

d. defined[B] = set of expressions defined in B

e. exit[B] = avail[B] – killed[B] + defined[B]

Algorithm :

1. First, compute defined and killed sets for each basic block

2. Iteratively compute the avail and exit sets for each block by running the
following algorithm until we get a fixed point:

a. Identify each statement s of the form a = b op c in some block B
such that b op c is available at the entry to B and neither b nor c
is redefined in B prior to s.

b. Follow flow of control backwards in the graph passing back to but
not through each block that defines b op c. the last computation of
b op c in such a block reaches s.

c. After each computation d = b op c identified in step 2(a), add
statement t = d to that block (where t is a new temp d).

d. Replace s by a = t

PART-6
Value Numbers and Algebraic Laws, Global Data Flow Analysis.

Questions-Answers

Long Answer Type and Medium Answer Type Questions

Que 5.19. Write a short note on data flow analysis.

OR
What is data flow analysis ? How does it use in code optimization ?

5–23 C (CS/IT-Sem-5)Compiler Design

Answer
1. Data flow analysis is a process in which the values are computed using

data flow properties.
2. In this analysis, the analysis is made on data flow.
3. A program’s Control Flow Graph (CFG) is used to determine those parts

of a program to which a particular value assigned to a variable might
propagate.

4. A simple way to perform data flow analysis of programs is to set up data
flow equations for each node of the control flow graph and solve them
by repeatedly calculating the output from the input locally at each node
until the whole system stabilizes, i.e., it reaches a fix point.

5. Reaching definitions is used by data flow analysis in code optimization.
Reaching definitions :

1. A definition D reaches at point p if there is a path from D to p along
which D is not killed.

d1 : y := 2

d2 : x := y + 2

B1

B2

2. A definition D of variable x is killed when there is a redefinition
of x.

d1 : y := 2

d2 : y := y + 2

B1

B2

d3 : x := y + 2 B3

3. The definition d1 is said to a reaching definition for block B2. But the
definition d1 is not a reaching definition in block B3, because it is killed
by definition d2 in block B2.

Que 5.20. Write short notes (any two) :

i. Global data flow analysis
ii. Loop unrolling
iii. Loop jamming

AKTU 2015-16, Marks 15

Code Generation 5–24 C (CS/IT-Sem-5)

OR
Write short note on global data analysis.

AKTU 2017-18, Marks 05

Answer

i. Global data flow analysis :
1. Global data flow analysis collects the information about the entire

program and distributed it to each block in the flow graph.

2. Data flow can be collected in various block by setting up and solving
a system of equation.

3. A data flow equation is given as :

OUT(s) = {IN(s) – KILL(s)}  GEN(s)

OUT(s) : Definitions that reach exist of block B.

GEN(s) : Definitions within block B that reach the end of B.

IN(s) : Definitions that reaches entry of block B.

KILL(s) : Definitions that never reaches the end of block B.

ii. Loop unrolling : Refer Q. 5.10, Page 5–11C, Unit-5.

iii. Loop fusion or loop jamming : Refer Q. 5.10, Page 5–11C, Unit-5.

Que 5.21. Discuss the role of macros in programming language.

Answer

Role of macros in programming language are :
1. It is use to define word that are used most of the time in program.

2. It automates complex task.

3. It helps to reduce the use of complex statement in a program.

4. It makes the program run faster.

VERY IMPORTANT QUESTIONS

Following questions are very important. These questions
may be asked in your SESSIONALS as well as

UNIVERSITY EXAMINATION.

Q. 1. What is code generation ? Discuss the design issues of
code generation.

Ans. Refer Q. 5.1.

5–25 C (CS/IT-Sem-5)Compiler Design

Q. 2. Write an algorithm to partition a sequence of three address
statements into basic blocks.

Ans. Refer Q. 5.3.

Q. 3. What is loop ? Explain what constitute a loop in a flow
graph.

Ans. Refer Q. 5.5.

Q. 4. Discuss in detail the process of optimization of basic blocks.
Give an example.

Ans. Refer Q. 5.6.

Q. 5. Explain what constitute a loop in a flow graph and how
will you do loop optimizations in code optimization of a
compiler.

Ans. Refer Q. 5.10.

Q. 6. Consider the following three address code segments :
PROD : = 0

1. l : = 1
2. T1 : = 4*l
3. T2 : = addr(A) – 4
4. T3 : = T2 [T1]
5. T4 : = addr(B) – 4
6. T5 : = T4[T1]
7. T6 : = T3*T5
8. PROD : = PROD + T6
9. l : = l + 1

10. If l < = 20 goto (3)
a. Find the basic blocks and flow graph of above sequence.
b. Optimize the code sequence by applying function preserving

transformation optimization technique.
Ans. Refer Q. 5.11.

Q. 7. Write short notes on the following with the help of example :
i. Loop unrolling

ii. Loop jamming
iii. Dominators
iv. Viable prefix

Ans. Refer Q. 5.12.

Q. 8. What is DAG ? What are its advantages in context of
optimization ?

Ans. Refer Q. 5.13.

Q. 9. Define a directed acyclic graph. Construct a DAG and write
the sequence of instructions for the expression :

Code Generation 5–26 C (CS/IT-Sem-5)

a + a * (b – c) + (b – c) * d.
Ans. Refer Q. 5.16.

Q. 10. Write short notes (any two) :
i. Global data flow analysis

ii. Loop unrolling
iii. Loop jamming

Ans. Refer Q. 5.20.



SQ–1 C (CS/IT-Sem-5)Compiler Design

Introduction to
Compiler

(2 Marks Questions)
1
UNIT

1.1. State any two reasons as a why phases of compiler should

be grouped. AKTU 2016-17, Marks 02

Ans. Two reasons for phases of compiler to be grouped are :
1. It helps in producing compiler for different source language.
2. Front end phases of many compilers are generally same.

1.2. Discuss the challenges in compiler design.

AKTU 2015-16, Marks 02

Ans. Challenges in compiler design are :
i. The compiler should be error free.
ii. It must generate correct machine code which should run fast.

iii. Compiler itself must run fast i.e., compilation time must be
proportional to program size.

iv. It must be portable (i.e., modular, supporting separate compilation).
v. It should give diagnostic and error messages.

1.3. What is translator ? AKTU 2017-18, Marks 02

Ans. A translator takes a program written in a source language as input
and converts it into a program in target language as output.

1.4. Differentiate between compiler and assembler.

AKTU 2017-18, Marks 02

Ans.

S. No. Compiler Assembler

1. It converts high level
language into machine
language.

2. Debugging is slow.

3. It is used by C, C++.

It converts assembly language into
machine language.

Debugging is fast.

It is used by assembly language.

2 Marks Questions SQ–2 C (CS/IT-Sem-5)

1.5. What do you mean by regular expression ?

AKTU 2015-16, 2017-18; Marks 02

Ans. Regular expressions are mathematical symbolisms which describe
the set of strings of specific language. It provides convenient and
useful notation for representing tokens.

1.6. Differentiate between compilers and interpreters.

AKTU 2015-16, Marks 02

Ans.

S. No. Compiler Interpreter

1.7. What is cross compiler ? AKTU 2015-16, Marks 02

Ans. A cross compiler is a compiler capable of creating executable code
for a platform other than the one on which the compiler is running.

1.8. How YACC can be used to generate parser ?

AKTU 2015-16, Marks 02

Ans.
1. YACC is a tool which will produce a parser for a given grammar.
2. YACC is a program designed to compile a LALR(1) grammar and

produce the source code. Hence, it is used to generate a parser.

1.9. Write regular expression to describe a language consist of
strings made of even number a and b.

AKTU 2016-17, Marks 02

Ans. Language of DFA which accept even number of a and b is given by :

1. It scans all the lines of source
program and list out all
syntax errors at a time.

2. Object produced by compiler
gets saved in a file. Hence,
file does not need to compile
again and again.

3. It takes less time to execute.

It scans one line at a time, if there is
any syntax error, the execution of
program terminates immediately.

Machine code produced by
interpreter is not saved in any file.
Hence, we need to interpret the
file each time.

It takes more time to execute.

SQ–3 C (CS/IT-Sem-5)Compiler Design

q0 q1

q2 q3

a

a

a

a

bbbb

Fig. 1.
Regular expression for above DFA :
(aa + bb + (ab + aa)(aa + bb)* (ab + ba))*

1.10. Write a CF grammar to represent palindrome.

AKTU 2016-17, Marks 02

Ans. Let the grammar G = {Vn, Vt, P, S} and the tuples are :
Vn = {S}

Vt = {0, 1}

S = start symbol

P is defined as :

S  0 |1|0S0 |1S1|

1.11. List the features of good compiler.

Ans. Features of good compiler are :
i. It compiles the large amount of code in less time.

ii. It requires less amount of memory space to compile the source
language.

iii. It can compile only the modified code segment if frequent
modifications are required in the source program.

iv. While handling the hardware interrupts good compilers interact
closely with operating system.

1.12. What are the two parts of a compilation ? Explain briefly.

AKTU 2018-19, Marks 02

Ans. Two parts of a compilation are :
1. Analysis part : It breaks up the source program into constituent

pieces and creates an intermediate representation of source
program.

2. Synthesis part : It constructs the desire target program from the
intermediate representation.

2 Marks Questions SQ–4 C (CS/IT-Sem-5)

1.13. What are the classifications of a compiler ?

AKTU 2018-19, Marks 02

Ans. Classification of a compiler :
1. Single pass compiler
2. Two pass compiler
1. Multiple pass compiler



SQ–5 C (CS/IT-Sem-5)Compiler Design

Basic Parsing
Techniques

(2 Marks Questions)
2
UNIT

2.1. State the problems associated with the top-down parsing.

AKTU 2015-16, Marks 02

Ans. Problems associated with top-down parsing are :
1. Backtracking
2. Left recursion
3. Left factoring
4. Ambiguity

2.2. What is the role of left recursion ?

AKTU 2015-16, Marks 02

Ans. Left recursion is a special case of recursion where a string is
recognized as part of a language by the fact that it decomposes into
a string from that same language (on the left) and a suffix (on the
right).

2.3. Name the data structures used by LL(1) parser.
Ans. Data structures used by LL(1) parser are :

i. Input buffer
ii. Stack

iii. Parsing table

2.4. Give the data structures for shift reduce parser.
Ans. Data structures for shift reduce parser are :

i. The input buffer storing the input string.
ii. A stack for storing and accessing the L.H.S and R.H.S of rules.

2.5. What are various types of LR parser ?
Ans. Various types of LR parser are :

i. SLR parser
ii. LALR parser

iii. Canonical LR parser

2.6. Why do we need LR parsing table ?

2 Marks Questions SQ–6 C (CS/IT-Sem-5)

Ans. We need LR parsing tables to parse the input string using shift
reduce method.

2.7. State limitation of SLR parser.
Ans. Limitation of SLR parser are :

i. SLR is less powerful than LR parser since SLR grammars
constitute a small subset of CFG.

ii. Problem of multiple entries arises when reduction may not lead

to the generation of previous rightmost derivations.

2.8. Define left factoring.
Ans. A grammar G is said to be left factored if any production of it is in

the form of :
A  | 

2.9. Define left recursion.
Ans. A grammar G(V, T, P, S) is said to be left recursive if it has a

production in the form of :
A  A  | 



SQ–7 C (CS/IT-Sem-5)Compiler Design

Syntax Directed
Translation

(2 Marks Questions)
3
UNIT

3.1. What do you mean by Syntax Directed Definition (SDD) ?
Ans. SDD is a generalization of CFG in which each grammar production

X  is associated with a set of semantic rules of the form
a = f(b1, b2 bn) where a is an attribute obtained from the
function f.

3.2. Define intermediate code.
Ans. Intermediate code is a code which is very close to machine code

generated by intermediate code generator during compilation.

3.3. What are the various types of intermediate code

representation ? AKTU 2018-19, Marks 02

Ans. Different forms of intermediate code are :
i. Abstract syntax tree
ii. Polish (prefix/postfix) notation

iii. Three address code

3.4. Define three address code. AKTU 2017-18, Marks 02

Ans. Three address code is an abstract form of intermediate code that
can be implemented as a record with the address fields. The general
form of three address code representation is :

a = b op c.

3.5. What is postfix notations ? AKTU 2017-18, Marks 02

Ans. Postfix notation is the type of notation in which operator are placed
at the right end of the expression. For example, to add A and B, we
can write as AB+ or BA+.

3.6. Why are quadruples preferred over triples in an optimizing

compiler ? AKTU 2016-17, Marks 02

2 Marks Questions SQ–8 C (CS/IT-Sem-5)

Switch E

{

case v1 : s1

case v2 : s2

...

case vn–1 : sn–1

default : sn

}

Evaluate E into t such that t = E

goto check

L1 : code for s1

goto last

L2 : code for s2

goto last

Ln : code for sn

goto last

check : if t = v1 goto L1

if t = v2 goto L2

...

if t = vn–1 goto Ln–1

goto Ln

last :

Ans.
1. Quadruples are preferred over triples in an optimizing compiler as

instructions are after found to move around in it.
2. In the triples notation, the result of any given operations is referred

by its position and therefore if one instruction is moved then it is
required to make changes in all the references that lead to that
result.

3.7. Give syntax directed translation for case statement.

AKTU 2016-17, Marks 02

Ans. Syntax directed translation scheme for case statement :

Production rule Semantic action

3.8. What is a syntax tree ? Draw the syntax tree for the
following statement : c b c b a – * + – * =

AKTU 2016-17, Marks 02

Ans.
1. A syntax tree is a tree that shows the syntactic structure of a

program while omitting irrelevant details present in a parse tree.

SQ–9 C (CS/IT-Sem-5)Compiler Design

1. Quadruple represent three
address code by using four
fields :
OP, ARG1, ARG2, RESULT.

2. Quadruple can perform code
immovability during
optimization.

Triples represent three address
code by using three fields :
OP, ARG1, ARG 2.

Triple faces the problem of code
immovability during optimization.

2. Syntax tree is condensed form of the parse tree.
Syntax tree of c b c b a – * + – * = :
In the given statement, number of alphabets is less than symbols.
So, the syntax tree drawn will be incomplete.

=
c

b
c

b
a

*
–

+
*

–

Fig. 3.8.1.

3.9. Define backpatching.
Ans. Backpatching is an activity of filling up unspecified information of

labels using appropriate semantic actions during the code generation
process. Backpatching is done for :

i. Boolean expressions
ii. Flow of control statements

3.10. Give advantages of SDD.
Ans. The main advantage of SDD is that it helps in deciding evaluation

order. The evaluation of semantic actions associated with SDD
may generate code, save information in symbol table, or may issue
error messages.

3.11. What are quadruples ? AKTU 2017-18, Marks 02

Ans. Quadruples are structure with at most four fields such as op, arg1,
arg2, result.

3.12. Differentiate between quadruples and triples.

AKTU 2015-16, Marks 02

Ans.

S. No. Quadruples Triples



2 Marks Questions SQ–10 C (CS/IT-Sem-5)

Symbol Tables
(2 Marks Questions)

4
UNIT

4.1. Write down the short note on symbol table.

AKTU 2017-18, Marks 02

Ans. A symbol table is a data structure used by a compiler to keep track
of scope, life and binding information about names. These names
are used in the source program to identify the various program
elements, like variables, constants, procedures, and the labels of
statements.

4.2. Describe data structure for symbol table.

AKTU 2017-18, Marks 02

Ans. Data structures for symbol table are :
1. Unordered list
2. Ordered list
3. Search tree
4. Hash tables and hash functions

4.3. What is mean by activation record ?

AKTU 2017-18, Marks 02

Ans. Activation record is a data structure that contains the important
state information for a particular instance of a function call.

4.4. What is phase level error recovery ?
Ans. Phase level error recovery is implemented by filling the blank entries

in the predictive parsing table with pointers to error routines. These
routines may change, insert, or delete symbols on the input and
issue appropriate error messages. They may also pop from the
stack.

4.5. List the various error recovery strategies for a lexical

analysis. AKTU 2018-19, Marks 02

Ans. Error recovery strategies are :
1. Panic mode recovery

SQ–11 C (CS/IT-Sem-5)Compiler Design

2. Phrase level recovery
3. Error production
4. Global correction

4.6. What are different storage allocation strategies ?
Ans. Different storage allocation strategies are :

i. Static allocation
ii. Stack allocation

iii. Heap allocation

4.7. What do you mean by stack allocation ?
Ans. Stack allocation is a strategy in which the storage is organized as

stack. This stack is also called control stack. This stack helps to
manage the storage space of local variable by using push and pop
operation.

4.8. Discuss heap allocation strategy.
Ans. The heap allocation allocates and deallocates the continuous block

of memory when required for storage data object at run time.

4.9. Discuss demerit of heap allocation.
Ans. Demerit of heap allocation is that it introduces holes in the memory

during allocation.



2 Marks Questions SQ–12 C (CS/IT-Sem-5)

Code Generation
(2 Marks Questions)

5
UNIT

5.1. What do you mean by code optimization ?
Ans. Code optimization refers to the technique used by the compiler to

improve the execution efficiency of the generated object code.

5.2. Define code generation.
Ans. Code generation is a process of creating assembly language/machine

language statements which will perform the operations specified
by source program when they run. Code generation is the final
activity of compiler.

5.3. What are the various loops in flow graph ?
Ans. Various loops in flow graph are :

i. Dominators
ii. Natural loops

iii. Inner loops
iv. Pre-header
v. Reducible flow graph

5.4. Define DAG. AKTU 2015-16, Marks 02

Ans.
1. The abbreviation DAG stands for Directed Acyclic Graph.
2. DAGs are useful data structure for implementing transformations

on basic blocks.
3. A DAG gives picture of how the value computed by each statement

in the basic block is used in the subsequent statement of the
block.

5.5. Write applications of DAG.
Ans. The DAG is used in :

i. Determining the common sub-expressions.
ii. Determining which names are used inside the block and computed

outside the block.
iii. Determining which statements of block could have their computed

value outside the block.
iv. Simplifying the list of quadruples by eliminating the common sub-

expressions.

SQ–13 C (CS/IT-Sem-5)Compiler Design

5.6. What is loop optimization ? What are its methods ?
Ans. Loop optimization is a technique in which code optimization is

performed on inner loops. The loop optimization is carried out by
following methods :

i. Code motion
ii. Induction variable and strength reduction

iii. Loop invariant method
iv. Loop unrolling
v. Loop fusion

5.7. What are various issues in design of code generation ?
Ans. Various issues in design of code generation are :

i. Input to the code generator
ii. Target programs

iii. Memory management
iv. Instruction selection
v. Register allocation

vi. Choice of evaluation order
vii. Approaches to code generation

5.8. List out the criteria for code improving transformations.

AKTU 2016-17, Marks 02

Ans. Criteria for code improving transformations are :
1. A transformation must preserve meaning of a program.
2. A transformation must improve program by a measurable amount

on average.
3. A transformation must worth the effort.

5.9. Represent the following in flow graph i = 1; sum = 0;

while (i < = 10) {sum+ = i ; i++ ; } AKTU 2016-17, Marks 02

Ans. Flow graph is given as :

Start

i = 0
sum = 0

if (i < = 10)
Yes

sum = sum + i
 i = i + 1;No

Stop

Fig. 5.9.1.

2 Marks Questions SQ–14 C (CS/IT-Sem-5)

5.10. What is the use of algebraic identities in optimization of

basic blocks ? AKTU 2016-17, Marks 02

Ans. Uses of algebraic identities in optimization of basic blocks
are :

1. The algebraic transformation can be obtained using the strength
reduction technique.

2. The constant folding technique can be applied to achieve the
algebraic transformations.

3. The use of common sub-expression elimination, use of associativity
and commutativity is to apply algebraic transformations on basic
blocks.

5.11. Discuss the subset construction algorithm.

AKTU 2015-16, Marks 02

Ans.
1. Subset construction algorithm is the algorithm in which algorithms

are partitioned into subset by finding the leader in the algorithm.
2. The target element of conditional or unconditional goto is a leader.
3. The basic block is formed by starting at the leader and ending just

before the leader statement.

5.12. How to perform register assignment for outer loops ?

AKTU 2016-17, Marks 02

Ans. Global register allocation allocates registers for variables in inner
loops first, since that is generally where a program spends a lot of
its time and the same register is used for the variables if it also
appears in an outer loop.

5.13. What is meant by viable prefixes ?

AKTU 2018-19, Marks 02

Ans. Viable prefixes are the prefixes of right sentential forms that can
appear on the stack of a shift-reduce parser.

5.14. Define peephole optimization. AKTU 2018-19, Marks 02

Ans. Peephole optimization is a type of code optimization performed on a
small part of the code. It is performed on the very small set of
instructions in a segment of code. The small set of instructions or
small part of code on which peephole optimization is performed is
known as peephole.

5.15. What is dangling else problem ? AKTU 2018-19, Marks 02

SQ–15 C (CS/IT-Sem-5)Compiler Design

Ans. Dangling else problem is the problem is which compiler always
associates an ‘else’ with the immediately preceding ‘if’ which causes
ambiguity. This problem arises in a nested if statement, where
number of if’s is more than the number of else clause.



SP–1 C (CS/IT-Sem-5)Compiler Design

B. Tech.
(SEM. VI) EVEN SEMESTER THEORY

EXAMINATION, 2015-16
COMPILER DESIGN

Time : 3 Hours Max. Marks : 100

Note : Attempt questions from all sections as per directions.

Section - A

Attempt all parts of the section. Answer in brief. (2 × 10 = 20)
1. a. What is cross compiler ?

b. What do you mean by a regular expression ?

c. State the problems associated with the top-down parsing.

d. Differentiate quadruples and triples.

e. Differentiate between compilers and interpreters.

f. How YACC can be used to generate parser ?

g. Define DAG.

h. Discuss the subset construction algorithm.

i. What is the role of left recursion ?

j. Discuss the challenges in compiler design.

Section - B

2. Attempt any five question from this section. (10 × 5 = 50)
a. Construct an SLR(1) parsing table for the following

grammar :
S  A)
S  A, P| (P, P
P  {num, num}

b. Give the algorithm for computing precedence function.
Consider the following operator precedence matrix draw
precedence graph and compute the precedence function :

SP–2 C (CS/IT-Sem-5)Solved Paper (2015-16)

a () ; $
A > > >
(< < = <
) > > >
; < < > >

< <$

c. Define backpatching and semantic rules for Boolean
expression. Derive the three address code for the following
expression :
P < Q or R < S and T < U

d. Generate three address code for the following code :
switch a + b
{
case 1 : x = x + 1
case 2 : y = y + 2
case 3 : z = z + 3
default : c = c – 1
}

e. Construct the LALR parsing table for following grammar :
S  AA
A  aA
A  b
is LR (1) but not LALR (1).

f. Show that the following grammar
S  Aa|bAc|Be|bBa
A  d
B  d
is LR (1) but not LALR (1).

g. What are lexical phase errors, syntactic phase errors and
semantic phase error ? Explain with suitable example.

h. Describe symbol table and its entries. Also, discuss various
data structure used for symbol table.

SP–3 C (CS/IT-Sem-5)Compiler Design

Section-C

Attempt any two question from this section. (15 × 2 = 30)
3. How DAG is different from syntax tree ? Construct the DAG

for the following basic blocks :
a : = b + c
b : = b – d
c : = c + d
e = b + c
Also, explain the key application of DAG.

4. Consider the following sequence of three address codes :
1. Prod : = 0
2. I : = 1
3. T1 : = 4*I
4. T2 : = addr (A) – 4
5. T3 : = T2 [T1]
6. T4 : = addr (B) – 4
7. T5 : = T4 [T1]
8. T6 : = T3*T5
9. Prod : = Prod + T6

10. I = I + 1
11. If I <= 20 goto (3)

Perform loop optimization.

5. Write short notes on :
i. Global data flow analysis

ii. Loop unrolling
iii. Loop jamming



SP–4 C (CS/IT-Sem-5)Solved Paper (2015-16)

1. It scans all the lines of source
program and list out all
syntax errors at a time.

2. Object produced by compiler
gets saved in a file. Hence,
file does not need to compile
again and again.

3. It takes less time to execute.

It scans one line at a time, if there is
any syntax error, the execution of
program terminates immediately.

Machine code produced by
interpreter is not saved in any file.
Hence, we need to interpret the
file each time.

It takes more time to execute.

1. Quadruple represent three
address code by using four
fields :
OP, ARG1, ARG2, RESULT.

2. Quadruple can perform code
immovability during
optimization.

Triples represent three address
code by using three fields :
OP, ARG1, ARG 2.

Triple faces the problem of code
immovability during optimization.

SOLUTION OF PAPER (2015-16)

Note : Attempt questions from all sections as per directions.

Section - A

Attempt all parts of the section. Answer in brief. (2 × 10 = 20)
1. a. What is cross compiler ?
Ans. A cross compiler is a compiler capable of creating executable code

for a platform other than the one on which the compiler is running.

b. What do you mean by a regular expression ?
Ans. Regular expressions are mathematical symbolisms which describe

the set of strings of specific language. It provides convenient and
useful notation for representing tokens.

c. State the problems associated with the top-down parsing.
Ans. Problems associated with top-down parsing are :

1. Backtracking 2. Left recursion
3. Left factoring 4. Ambiguity

d. Differentiate quadruples and triples.
Ans.

S. No. Quadruples Triples

e. Differentiate between compilers and interpreters.
Ans.

S. No. Compiler Interpreter

SP–5 C (CS/IT-Sem-5)Compiler Design

f. How YACC can be used to generate parser ?
Ans.

1. YACC is a tool which will produce a parser for a given grammar.
2. YACC is a program designed to compile a LALR(1) grammar and

produce the source code. Hence, it is used to generate a parser.

g. Define DAG.
Ans.

1. The abbreviation DAG stands for Directed Acyclic Graph.
2. DAGs are useful data structure for implementing transformations

on basic blocks.
3. A DAG gives picture of how the value computed by each statement

in the basic block is used in the subsequent statement of the
block.

h. Discuss the subset construction algorithm.
Ans.

1. Subset construction algorithm is the algorithm in which algorithms
are partitioned into subset by finding the leader in the algorithm.

2. The target element of conditional or unconditional goto is a leader.
3. The basic block is formed by starting at the leader and ending just

before the leader statement.

i. What is the role of left recursion ?
Ans. Left recursion is a special case of recursion where a string is

recognized as part of a language by the fact that it decomposes into
a string from that same language (on the left) and a suffix (on the
right).

j. Discuss the challenges in compiler design.
Ans. Challenges in compiler design are :

i. The compiler should be error free.
ii. It must generate correct machine code which should run fast.

iii. Compiler itself must run fast i.e., compilation time must be
proportional to program size.

iv. It must be portable (i.e., modular, supporting separate compilation).
v. It should give diagnostic and error messages.

Section - B

2. Attempt any five question from this section. (10 × 5 = 50)
a. Construct an SLR(1) parsing table for the following

grammar :
S  A)
S  A, P| (P, P
P  {num, num}

SP–6 C (CS/IT-Sem-5)Solved Paper (2015-16)

Ans. The augmented grammar G for the above grammar G is :
S S
S  A)
S  A, P
S  (P, P
P  {num, num}

The canonical collection of sets of LR(0) item for grammar are as
follows :
I0 : S • S

S  • A)
S  • A, P
S  • (P, P
P  • {num, num}

I1 = GOTO (I0, S)
I1 : S S •
I2 = GOTO (I0, A)
I2 : S  A •)

S  A •, P
I3 = GOTO (I0, ()
I3 : S  (• P, P

P  •{num, num}
I4 = GOTO (I0, {)
I4 : P  {• num, num}
I5 = GOTO (I2,))
I5 : S  A) •
I6 = GOTO (I2, ,)
I6 : S  A , • P

P  •{num, num}
I7 = GOTO (I3, P)
I7 : S  (P•, P
I8 = GOTO (I4, num)
I8 : P  {num •, num}
I9 = GOTO (I6, P)
I9 : S  A, P•
I10 = GOTO (I7, ,)
I10 : S  (P, •P

P  • {num, num}
I11 = GOTO (I8, ,)
I11 : P  {num, • num}
I12 = GOTO (I10, P)

S  (P , P •
I13 = GOTO (I11, num)
I13 : P  {num, num •}
I14 = GOTO (I13 ,})
I14 : P  {num, num} •

SP–7 C (CS/IT-Sem-5)Compiler Design

Action Goto

Item) , ({ Num } $ S A P
Set

0 S3 S4 1 2

1 accept

2 S5 S6

3 S4 6

4 S8

5 r1

6 S4 r2 9

7 S10

8 S11

9 r2

10 S4 12

11 S13

12 r3

13 S14

14 r4 r4

b. Give the algorithm for computing precedence function.
Consider the following operator precedence matrix draw
precedence graph and compute the precedence function :

a () ; $
A > > >
(< < = <
) > > >
; < < > >

< <$

Ans. Algorithm for computing precedence function :
Input : An operator precedence matrix.
Output : Precedence functions representing the input matrix or
an indication that none exist.
Method :

1. Create symbols fa and ga for each a that is a terminal or $.
2. Partition the created symbols into as many groups as possible, in

such a way that if ab, then fa and gb are in the same group.

SP–8 C (CS/IT-Sem-5)Solved Paper (2015-16)

3. Create a directed graph whose nodes are the groups found in step
2. For any a and b, if a <. b, place an edge from the group of gb to the
group of fa. If a .> b, place an edge from the group of fa to that of gb.

4. If the graph constructed in step 3 has a cycle, then no precedence
functions exist. If there are no cycles, let f(a) be the length of the
longest path from the group of fa; let g(b) be the length of the
longest path from the group of gb. Then there exists a precedence
function.
Precedence graph for above matrix is :

fa ga

f(

f)

f;

f$

g(

g)

g;

g$

Fig. 1.
From the precedence graph, the precedence function using
algorithm calculated as follows :

(() ; $

f 1 0 2 2 0

g 3 3 0 1 0

c. Define backpatching and semantic rules for Boolean
expression. Derive the three address code for the following
expression :
P < Q or R < S and T < U

Ans.
1. Backpatching is the activity of filling up unspecified information of

labels using appropriate semantic actions during the code generation
process.

2. Backpatching refers to the process of resolving forward branches
that have been used in the code, when the value of the target
becomes known.
Backpatching in boolean expressions :

1. The solution is to generate a sequence of branching statements
where the addresses of the jumps are temporarily left unspecified.

2. For each boolean expression E we maintain two lists :
a. E.truelist which is the list of the (addresses of the) jump

statements appearing in the translation of E and forwarding
to E.true.

SP–9 C (CS/IT-Sem-5)Compiler Design

b. E.falselist which is the list of the (addresses of the) jump
statements appearing in the translation of E and forwarding
to E.false.

3. When the label E.true (resp. E.false) is eventually defined we can
walk down the list, patching in the value of its address.

4. In the translation scheme below :
a. We use emit to generate code that contains place holders to be

filled in later by the backpatch procedure.
b. The attributes E.truelist, E.falselist are synthesized.
c. When the code for E is generated, addresses of jumps

corresponding to the values true and false are left unspecified
and put on the lists E.truelist and E.falselist, respectively.

5. A marker non-terminal M is used to capture the numerical address
of a statement.

6. nextinstr is a global variable that stores the number of the next
statement to be generated.
The grammar is as follows :
B  B1|| MB2  B1 AND MB2  !B1  (B1)  E1 rel E2  True  False
M  
The translation scheme is as follows :

i. B  B1 || MB2{backpatch (B1.falselist, M.instr);
B.truelist = merge (B1.truelist,
B2.truelist);
B.falselist = B2.falselist;}

ii. B  B1AND MB2
{backpatch (B1.truelist, M.instr);
B.truelist = B2.truelist;
B.falselist = merge (B1.falselist,

B2.falselist);}
iii. B  !B1{B.truelist = B1.falselist;

B.falselist = B1.truelist;}
iv. B  (B1){B.truelist = B1.truelist;

B.falselist = B1.falselist;}
v. B  E1 rel E2{B.truelist = makelist (nextinstr);

B.falselist = makelist (nextinstr + 1);
append (‘if’ E1.addr relop E2.addr ‘goto_’);
append (‘goto_’);}

vi. B  true{B.truelist = makelist (nextinstr);
append (‘goto_’);}

vii. B  false{B.falselist = makelist (nextinstr);
append (‘goto_’);}

viii. M  {M.instr = nextinstr;}
Three address code :
100 : if P < Q goto_
101 : goto 102
102 : if R < S goto 104
103 : goto_

SP–10 C (CS/IT-Sem-5)Solved Paper (2015-16)

104 : if T < U goto_
105 : goto_

d. Generate three address code for the following code :
switch a + b
{
case 1 : x = x + 1
case 2 : y = y + 2
case 3 : z = z + 3
default : c = c – 1
}

Ans.
101 : t1 = a + b goto 103

102 : goto 115

103 : t = 1 goto 105

104 : goto 107

105 : t2 = x + 1

106 : x = t2

107 : if t = 2 goto 109

108 : goto 111

109 : t3 = y + 2

110 : y = t3

111 : if t = 3 goto 113

112 : goto 115

113 : t4 = z + 3

114 : z = t4

115 : t5 = c – 1

116 : c = t5

117 : Next statement

e. Construct the LALR parsing table for following grammar :
S  AA
A  aA
A  b
is LR (1) but not LALR (1).

Ans. The given grammar is :
S  AA

A  aA|b

The augmented grammar will be :

S S

SP–11 C (CS/IT-Sem-5)Compiler Design

S  AA

A  aA|b

The LR (1) items will be :

I0 : S •S, $

S  •AA, $

A  •aA, a/b

A  •b, a/b
I1 = GOTO (I0, S)

I1: S S•, $

I2 = GOTO (I0, A)

I2: S  A•A, $

A  •aA, $

A  •b, $

I3 = GOTO (I0, a)

I3: A  a•A, a/b

A  •aA, a/b

A  •b, a/b
I4 = GOTO (I0, b)

I4: A  b•, a/b

I5 = GOTO (I2, A)

I5: S  AA•, $

I6 = GOTO (I2, a)

I6: A  a•A, $

A  •aA, $

A  •b, $

I7 = GOTO (I2, b)

I7: A  b•, $

I8 = GOTO (I3, A)

I8: A  aA•, a/b

I9 = GOTO (I6, A)

I9: A  aA•, $

SP–12 C (CS/IT-Sem-5)Solved Paper (2015-16)

Table 1.

State Action Goto

a b $ S A

0 S3 S4 1 2

1 accept

2 S6 S7 5

3 S3 S4 8

4 r3 r3

5 r1

6 S6 S7 9

7 r3

8 r2 r2

9 r2

Since table does not contain any conflict. So it is LR(1).
The goto table will be for LALR I3 and I6 will be unioned, I4 and I7
will be unioned, and I8 and I9 will be unioned.

So, I36 : A a•A, a / b / $
A  •aA, a / b / $

A  •b, a / b / $

I47 : A  b•, a / b / $

I89 : A  aA•, a / b / $ and LALR table will be :

Table 2.

State Action Goto

a b $ S A

0 S36 S47 1 2

1 accept

2 S36 S47 5

36 S36 S47 89

47 r3 r3 r3

5 r1

89 r2 r2 r2

SP–13 C (CS/IT-Sem-5)Compiler Design

Since, LALR table does not contain any conflict. So, it is also
LALR(1).
DFA :

I0 I1

I2

I36

I47

I5

I89

S

A

a

b

b b

aa

A

A

Fig. 2.

f. Show that the following grammar

S  Aa|bAc|Be|bBa

A  d

B  d

is LR (1) but not LALR (1).

Ans. Augmented grammar G for the given grammar :

S  S

S  Aa

S  bAc

S  Bc

S  bBa

A  d

B  d

Canonical collection of sets of LR(0) items for grammar are as
follows :

I0 : S  •S, $

S  •Aa, $

S  •bAc, $

SP–14 C (CS/IT-Sem-5)Solved Paper (2015-16)

S  •Bc, $

S  •bBa, $

A  •d, a

B  •d, c

I1 = GOTO (I0, S)

I1 : S  S•, $

I2 = GOTO (I0, A)

I2 : S  A•a, $

I3 = GOTO (I0, b)

I3 : S  b•Ac, $

S  b•Ba, $

A  •d, c

B  •d, a

I4 = GOTO (I0, B)

I4 : S  B•c, $

I5 = GOTO (I0, d)

I5 : A  d•, a

B  d•, c

I6 = GOTO (I0, a)

I6 : S  Aa•, $

I7 = GOTO (I3, A)

I7 : S  bA•c, $

I8 = GOTO (I3, B)

I8 : S  bB•a, $

I9 = GOTO (I3, d)

I9 : A  d•, c

B  d•, a

I10 = GOTO (I4, c)

SP–15 C (CS/IT-Sem-5)Compiler Design

I10 : S  Bc•, $

I11 = GOTO (I7, c)

I11 : S  bAc•, $

I12 = GOTO (I8, a)

I12 : S  bBa•, $

The action/goto table will be designed as follows :

Table 3.

State Action Goto

a b c d $ S A B

0 S3 S5 1 2 4

1 accept

2 S6

3 S9 7 8

4 S10

5 r5 r6

6 r1

7 S11

8 S12

9 r6 r5

10 r3

11 r2

12 r4

Since the table does not have any conflict. So, it is LR(1).

For LALR(1) table, item set 5 and item set 9 are same. Thus we
merge both the item sets (I5, I9) = item set I59. Now, the resultant
parsing table becomes :

SP–16 C (CS/IT-Sem-5)Solved Paper (2015-16)

Table 4.

State Action Goto

a b c d $ S A B

0 S3 S59 1 2 4

1 accept

2 S6

3 S59 7 8

4 S10

59 r59, r6 r6, r59

6 r1

7 S11

8 S12

10 r3

11 r2

12 r4

Since the table contains reduce-reduce conflict, it is not LALR(1).

g. What are lexical phase errors, syntactic phase errors and
semantic phase error ? Explain with suitable example.

Ans.
1. Lexical phase error :
a. A lexical phase error is a sequence of character that does not match

the pattern of token i.e., while scanning the source program, the
compiler may not generate a valid token from the source program.

b. Reasons due to which errors are found in lexical phase are :
i. The addition of an extraneous character.
ii. The removal of character that should be presented.

iii. The replacement of a character with an incorrect character.
iv. The transposition of two characters.

For example :
i. In Fortran, an identifier with more than 7 characters long is a

lexical error.
ii. In Pascal program, the character ~, & and @ if occurred is a lexical

error.
2. Syntactic phase errors (syntax error) :
a. Syntactic errors are those errors which occur due to the mistake

done by the programmer during coding process.

SP–17 C (CS/IT-Sem-5)Compiler Design

b. Reasons due to which errors are found in syntactic phase are :
i. Missing of semicolon
ii. Unbalanced parenthesis and punctuation

For example : Let us consider the following piece of code :
int x;
int y //Syntax error
In example, syntactic error occurred because of absence of
semicolon.

3. Semantic phase errors :
a. Semantic phase errors are those errors which occur in declaration

and scope in a program.
b. Reason due to which errors are found :
i. Undeclared names
ii. Type incompatibilities

iii. Mismatching of actual arguments with the formal arguments.
For example : Let us consider the following piece of code :
scanf(“%f%f”, a, b);
In example, a and b are semantic error because scanf uses address
of the variables as &a and &b.

4. Logical errors :
a. Logical errors are the logical mistakes founded in the program

which is not handled by the compiler.
b. In these types of errors, program is syntactically correct but does

not operate as desired.
For example :
Let consider following piece of code :
x = 4;
y = 5;
average = x + y/2;
The given code do not give the average of x and y because BODMAS
property is not used properly.

h. Describe symbol table and its entries. Also, discuss various
data structure used for symbol table.

Ans. Symbol table :
1. A symbol table is a data structure used by a compiler to keep track

of scope, life and binding information about names.
2. These information are used in the source program to identify the

various program elements, like variables, constants, procedures,
and the labels of statements.
Entries in the symbol table are as follows :

1. Variables :
a. Variables are identifiers whose value may change between

executions and during a single execution of a program.
b. They represent the contents of some memory location.
c. The symbol table needs to record both the variable name as

well as its allocated storage space at runtime.

SP–18 C (CS/IT-Sem-5)Solved Paper (2015-16)

2. Constants :
a. Constants are identifiers that represent a fixed value that can

never be changed.
b. Unlike variables or procedures, no runtime location needs to

be stored for constants.
c. These are typically placed right into the code stream by the

compiler at compilation time.
3. Types (user defined) :

a. A user defined type is combination of one or more existing
types.

b. Types are accessed by name and reference a type definition
structure.

4. Classes :
a. Classes are abstract data types which restrict access to its

members and provide convenient language level polymorphism.
b. This includes the location of the default constructor and

destructor, and the address of the virtual function table.
5. Records :

a. Records represent a collection of possibly heterogeneous
members which can be accessed by name.

b. The symbol table probably needs to record each of the record’s
members.

Various data structure used for symbol table :
1. Unordered list :

a. Simple to implement symbol table.
b. It is implemented as an array or a linked list.
c. Linked list can grow dynamically that eliminate the problem of

a fixed size array.
d. Insertion of variable take (1) time , but lookup is slow for

large tables i.e., (n) .
2. Ordered list :

a. If an array is sorted, it can be searched using binary search in
(log 2 n).

b. Insertion into a sorted array is expensive that it takes (n)
time on average.

c. Ordered list is useful when set of names is known i.e., table of
reserved words.

3. Search tree :
a. Search tree operation and lookup is done in logarithmic time.
b. Search tree is balanced by using algorithm of AVL and Red-

black tree.
4. Hash tables and hash functions :

a. Hash table translate the elements in the fixed range of value
called hash value and this value is used by hash function.

b. Hash table can be used to minimize the movement of elements
in the symbol table.

SP–19 C (CS/IT-Sem-5)Compiler Design

c. The hash function helps in uniform distribution of names in
symbol table.

Section-C

Attempt any two question from this section. (15 × 2 = 30)
3. How DAG is different from syntax tree ? Construct the DAG

for the following basic blocks :
a : = b + c
b : = b – d
c : = c + d
e = b + c
Also, explain the key application of DAG.

Ans. DAG v/s Syntax tree :
1. Directed Acyclic Graph is a data structure for transformations on

the basic block. While syntax tree is an abstract representation of
the language constructs.

2. DAG is constructed from three address statement while syntax
tree is constructed directly from the expression.
DAG for the given code is :

a +
+b

e
c

b0

c0 d0

+
+

Fig. 3.
1. The two occurrences of sub-expressions b + c compute the same

value.
2. Value computed by a and e are same.

Applications of DAG :
1. Scheduling : Directed acyclic graphs representations of partial

orderings have many applications in scheduling for systems of tasks.
2. Data processing networks : A directed acyclic graph may be

used to represent a network of processing elements.
3. Data compression :Directed acyclic graphs may also be used as a

compact representation of a collection of sequences. In this type of
application, one finds a DAG in which the paths form the sequences.

4. It helps in finding statement that can be recorded.

4. Consider the following sequence of three address codes :
1. Prod : = 0
2. I : = 1
3. T1 : = 4*I
4. T2 : = addr (A) – 4
5. T3 : = T2 [T1]
6. T4 : = addr (B) – 4

SP–20 C (CS/IT-Sem-5)Solved Paper (2015-16)

7. T5 : = T4 [T1]
8. T6 : = T3*T5
9. Prod : = Prod + T6

10. I = I + 1
11. If I <= 20 goto (3)

Perform loop optimization.
Ans. Basic blocks and flow graph :

1. As first statement of program is leader statement.
 PROD = 0 is a leader.

2. Fragmented code represented by two blocks is shown below :

PROD = 0
I = 1

T = addr(A) – 42

T = addr(B) – 44

T = 4 * I1

T = T [T]3 12

T = T [T]5 4 1
T = T * T6 3 5
PROD = PROD + T6
I = I + 1
If I <= 20 goto B2

B1

B2

Fig. 4.
Loop optimization :

1. Code motion : In block B2 we can see that value of T2 and T4 is
calculated every time when loop is executed. So, we can move
these two instructions outside the loop and put in block B1 as shown
in Fig. 5.

PROD = 0
I = 1

T = 4 * I1
T = T [T]3 12

T = T [T]5 4 1
T = T * T6 3 5
PROD = PROD + T6
I = I + 1
If I <= 20 goto B2

B1

B2

T = addr(A) – 42

T = addr(B) – 44

Fig. 5.

SP–21 C (CS/IT-Sem-5)Compiler Design

2. Induction variable : A variable I and T1 are called an induction
variable of loop L because every time the variable I change the
value of T1 is also change. To remove these variables we use other
method that is called reduction in strength.

3. Reduction in strength : The values of I varies from 1 to 20 and
value T1 varies from (4, 8, ... , 80).
Block B2 is now given as

T1 = 4 * I  In block B1

T = T + 41 1 B2

Now final flow graph is given as

PROD = 0
T = 4 * I1
T = addr(A) – 42
T = addr(B) – 44

T = T + 41 1

T = T [T]3 2 1
T = T [T]5 4 1

T = T * T6 3 5
PROD = PROD + T6
if T < = 80 goto B1 2

B1

B2

Fig. 6.
5. Write short notes on :
i. Global data flow analysis

ii. Loop unrolling
iii. Loop jamming

Ans.
i. Global data flow analysis :
1. Global data flow analysis collects the information about the entire

program and distributed it to each block in the flow graph.
2. Data flow can be collected in various block by setting up and solving

a system of equation.
3. A data flow equation is given as :

OUT(s) = {IN(s) – KILL(s)}  GEN(s)
OUT(s) : Definitions that reach exist of block B.
GEN(s) : Definitions within block B that reach the end of B.
IN(s) : Definitions that reaches entry of block B.
KILL(s) : Definitions that never reaches the end of block B.

ii. Loop unrolling : In this method, the number of jumps and tests
can be reduced by writing the code two times.

SP–22 C (CS/IT-Sem-5)Solved Paper (2015-16)

For example :

int i = 1;
while(i<=100)
{

a[i]=b[i];
i++;

}

int i = 1;
while(i<=100)
{

a[i]=b[i];
i++;
a[i]=b[i];
i++ ;

}

Can be written as

iii. Loop fusion or loop jamming : In loop fusion method, several
loops are merged to one loop.
For example :

for i:=1 to n do
for j:=1 to m do
a[i,j]:=10

for i:=1 to n*m do
a[i]:=10

Can be written as



SP–1 C (CS/IT-Sem-5)Compiler Design

B. Tech.
(SEM. VI) EVEN SEMESTER THEORY

EXAMINATION, 2016-17
COMPILER DESIGN

Time : 3 Hours Max. Marks : 100

Note : Be precise in your answer. In case of numerical problem assume
data wherever not provided.

Section-A

1. Attempt all parts. (2 × 10 = 20)
a. State any two reasons as a why phases of compiler should

be grouped.

b. Write regular expression to describe a language consist of
strings made of even number a & b.

c. Write a CF grammar to represent palindrome.

d. Why are quadruples preferred over triples in an optimizing
compiler ?

e. Give syntax directed translation for case statement.

f. What is a syntax tree ? Draw the syntax tree for the
following statement : c b c b a – * + – * =

g. How to perform register assignment for outer loops ?

h. List out the criteria for code improving transformations.

i. Represent the following in flow graph i = 1; sum = 0;
while (i < = 10) {sum+ = i ; i++ ; }

j. What is the use of algebraic identities in optimization of
basic blocks ?

Section-B

2. Attempt any five of the following questions : (10 × 5 = 50)
a. Explain in detail the process of compilation. Illustrate the

output of each phase of compilation of the input
“a = (b + c)*(b + c)* 2”.

SP–2 C (CS/IT-Sem-5)Solved Paper (2016-17)

b. Construct the minimized DFA for the regular expression
(0 + 1)*(0 + 1) 10.

c. What is an ambiguous grammar ? Is the following grammar
is ambiguous ? Prove EE + |E(E)|id. The grammar should
be moved to the next line, centered.

d. Draw NFA for the regular expression ab*|ab.

e. How names can be looked up in the symbol table ? Discuss.

f. Write an algorithm to partition a sequence of three address
statements into basic blocks.

g. Discuss in detail the process of optimization of basic blocks.
Give an example.

h. How to sub-divide a run-time memory into code and data
areas ? Explain.

Section-C

Attempt any two part of the following questions : (15 × 2 = 30)
3. Consider the following grammar

S  AS|b
A  SA|a
Construct the SLR parse table for the grammar. Show the
actions of the parser for the input string “abab”.

4. How would you convert the following into intermediate
code ? Give a suitable example.

i. Assignment statements
ii. Case statements

5. Define a directed acyclic graph. Construct a DAG and write
the sequence of instructions for the expression :
a + a * (b – c) + (b – c) * d.



SP–3 C (CS/IT-Sem-5)Compiler Design

SOLUTION OF PAPER (2016-17)

Note : Be precise in your answer. In case of numerical problem assume
data wherever not provided.

Section-A

1. Attempt all parts. (2 × 10 = 20)
a. State any two reasons as a why phases of compiler should

be grouped.
Ans. Two reasons for phases of compiler to be grouped are :

1. It helps in producing compiler for different source language.
2. Front end phases of many compilers are generally same.

b. Write regular expression to describe a language consist of
strings made of even number a & b.

Ans. Language of DFA which accept even number of a and b is given by :

q0 q1

q2 q3

a

a

a

a

bbbb

Fig. 1.
Regular expression for above DFA :
(aa + bb + (ab + aa)(aa + bb)* (ab + ba))*

c. Write a CF grammar to represent palindrome.
Ans. Let the grammar G = {Vn, Vt, P, S} and the tuples are :

Vn = {S}

Vt = {0, 1}

S = start symbol

P is defined as :

S  0 |1|0S0 |1S1|

d. Why are quadruples preferred over triples in an optimizing
compiler ?

Ans.
1. Quadruples are preferred over triples in an optimizing compiler as

instructions are after found to move around in it.

SP–4 C (CS/IT-Sem-5)Solved Paper (2016-17)

Switch E

{

case v1 : s1

case v2 : s2

...

case vn–1 : sn–1

default : sn

}

Evaluate E into t such that t = E

goto check

L1 : code for s1

goto last

L2 : code for s2

goto last

Ln : code for sn

goto last

check : if t = v1 goto L1

if t = v2 goto L2

...

if t = vn–1 goto Ln–1

goto Ln

last :

2. In the triples notation, the result of any given operations is referred
by its position and therefore if one instruction is moved then it is
required to make changes in all the references that lead to that
result.

e. Give syntax directed translation for case statement.
Ans. Syntax directed translation scheme for case statement :

Production rule Semantic action

f. What is a syntax tree ? Draw the syntax tree for the
following statement : c b c b a – * + – * =

Ans.
1. A syntax tree is a tree that shows the syntactic structure of a

program while omitting irrelevant details present in a parse tree.

2. Syntax tree is condensed form of the parse tree.

Syntax tree of c b c b a – * + – * = :

In the given statement, number of alphabets is less than symbols.
So, the syntax tree drawn will be incomplete.

SP–5 C (CS/IT-Sem-5)Compiler Design

=
c

b
c

b
a

*
–

+
*

–

Fig. 2.

g. How to perform register assignment for outer loops ?
Ans. Global register allocation allocates registers for variables in inner

loops first, since that is generally where a program spends a lot of
its time and the same register is used for the variables if it also
appears in an outer loop.

h. List out the criteria for code improving transformations.
Ans. Criteria for code improving transformations are :

1. A transformation must preserve meaning of a program.
2. A transformation must improve program by a measurable amount

on average.
3. A transformation must worth the effort.

i. Represent the following in flow graph i = 1; sum = 0;
while (i < = 10) {sum+ = i ; i++ ; }

Ans. Flow graph is given as :

Start

i = 0
sum = 0

if (i < = 10)
Yes

sum = sum + i
 i = i + 1;No

Stop

Fig. 3.

j. What is the use of algebraic identities in optimization of
basic blocks ?

Ans. Uses of algebraic identities in optimization of basic blocks
are :

1. The algebraic transformation can be obtained using the strength
reduction technique.

SP–6 C (CS/IT-Sem-5)Solved Paper (2016-17)

2. The constant folding technique can be applied to achieve the
algebraic transformations.

3. The use of common sub-expression elimination, use of associativity
and commutativity is to apply algebraic transformations on basic
blocks.

Section-B

2. Attempt any five of the following questions : (10 × 5 = 50)
a. Explain in detail the process of compilation. Illustrate the

output of each phase of compilation of the input
“a = (b + c)*(b + c)* 2”.

Ans. A compiler contains 6 phases which are as follows :
i. Phase 1 (Lexical analyzer) :
a. The lexical analyzer is also called scanner.
b. The lexical analyzer phase takes source program as an input and

separates characters of source language into groups of strings
called token.

c. These tokens may be keywords identifiers, operator symbols and
punctuation symbols.

ii. Phase 2 (Syntax analyzer) :
a. The syntax analyzer phase is also called parsing phase.
b. The syntax analyzer groups tokens together into syntactic

structures.
c. The output of this phase is parse tree.

iii. Phase 3 (Semantic analyzer) :
a. The semantic analyzer phase checks the source program for

semantic errors and gathers type information for subsequent code
generation phase.

b. It uses parse tree and symbol table to check whether the given
program is semantically consistent with language definition.

c. The output of this phase is annotated syntax tree.
iv. Phase 4 (Intermediate code generation) :
a. The intermediate code generation takes syntax tree as an input

from semantic phase and generates intermediate code.
b. It generates variety of code such as three address code, quadruple,

triple.

SP–7 C (CS/IT-Sem-5)Compiler Design

Symbol table
manager Error handler

Source program

Lexical analyzer

Syntax analyzer

Semantic analyzer

Intermediate code
generator

Code optimizer

Code generator

Target program

Fig. 4.
v. Phase 5 (Code optimization) : This phase is designed to improve

the intermediate code so that the ultimate object program runs
faster and takes less space.

vi. Phase 6 (Code generation) :
a. It is the final phase for compiler.
b. It generates the assembly code as target language.
c. In this phase, the address in the binary code is translated from

logical address.
Symbol table / table management : A symbol table is a data
structure containing a record that allows us to find the record for
each identifier quickly and to store or retrieve data from that
record quickly.
Error handler : The error handler is invoked when a flaw in the
source program is detected.

SP–8 C (CS/IT-Sem-5)Solved Paper (2016-17)

Compilation of “a = (b + c)*(b + c)*2” :

Lexical analyzer

Syntax analyzer

=

+

id1

id2

*

*

+

id3

2

Semantic analyzer

=

+

id1

id2

*

*

+

id3

int_to_real

2

a b c b c = (+) * (+)* 2

Input processing in compiler Output

Token stream

Parse tree

Annotated syntax tree

id id id id id1 2 2 3 = (+) * (+) * 23

Intermediate code
generation

t b c
t t t
t
t t t
id t

1

2 1 1

3

4 2 3

1 4

= +
= *
= int_to_real (2)
= *
 =

Intermediate code

SP–9 C (CS/IT-Sem-5)Compiler Design

Machine code

Optimized code

Machine code

Code optimization

t b c
t t t
id t

1

2 1 1

1 2

= +
= *

= * 2

MOV ,
ADD , ,
MUL , R ,
MUL , , # 2.0
ST ,

R b
R R c
R R
R R

id R

1

1 1

2 1 1

2 1

1 2

b. Construct the minimized DFA for the regular expression
(0 + 1)*(0 + 1) 10.

Ans. Given regular expression : (0 + 1)*(0 + 1)10
NFA for given regular expression :

q1 qf
(0 + 1)*(0 + 1)10

q1 q2
(0 + 1)* q3

(0 + 1) 1 q4
0

q1 q2
(0 + 1)* 0

1
q4

0q3

q1 q5
 0 1 q4

0q3
1 q2 1

0, 1

qf

qf

qf

1

If we remove  we get

q1
0 1 q4

0q31

0, 1

qf

[  can be neglected so q1 = q5 = q2]
Now, we convert above NFA into DFA :
Transition table for NFA :

/ 0 1

 q1 q1 q3 q1 q3
q3  q4
q4 qf 

* qf  

SP–10 C (CS/IT-Sem-5)Solved Paper (2016-17)

Transition table for DFA :

/ 0 1 Let

 q1 q1 q3 q1 q3 q1 as A
q1 q3 q1 q3 q1 q3q4 q1 q3 as B

q1 q3 q4 q1 q3 qf q1 q3 q4 q1 q3 q4 as C
* q1 q3 qf q1 q3 q1 q3 q4 q1 q3 qf as D

Transition diagram for DFA :

0 1 0
D1A B C

0 1
1

0

/ 0 1

 A B B
B B C
C D C

*D B C

For minimization divide the rows of transition table into 2 sets, as
Set-1 : It consists of non-final state rows.

A B B

B B C

C D C

Set-2 : It consists of final state rows.

*D B C

No two rows are similar.
So, the DFA is already minimized.

c. What is an ambiguous grammar ? Is the following grammar
is ambiguous ? Prove EE + |E(E)|id. The grammar should
be moved to the next line, centered.

Ans. Ambiguous grammar : A context free grammar G is ambiguous
if there is at least one string in L(G) having two or more distinct
derivation tree.
Proof : Let production rule is given as :
E  EE+
E  E(E)
E  id
Parse tree for id(id)id + is

SP–11 C (CS/IT-Sem-5)Compiler Design

E

E E +

E E() id

id id

Only one parse tree is
possible for id(id)id+
so, the given grammar
is unambiguous.

d. Draw NFA for the regular expression ab*|ab.
Ans.

Step 1 : a
a

Step 2 : b*

b


Step 3 : b
b

Step 4 : ab*

a  b 


Step 5 : ab
 a  b 

Step 6 : ab*|ab

a  b



1

2 3 4 5

a  b6 7 8 9

10







Fig. 5. NFA of ab*|ab.

e. How names can be looked up in the symbol table ? Discuss.
Ans.

1. The symbol table is searched (looked up) every time a name is
encountered in the source text.

2. When a new name or new information about an existing name is
discovered, the content of the symbol table changes.

3. Therefore, a symbol table must have an efficient mechanism for
accessing the information held in the table as well as for adding
new entries to the symbol table.

SP–12 C (CS/IT-Sem-5)Solved Paper (2016-17)

4. In any case, the symbol table is a useful abstraction to aid the
compiler to ascertain and verify the semantics, or meaning of a
piece of code.

5. It makes the compiler more efficient, since the file does not need to
be re-parsed to discover previously processed information.
For example : Consider the following outline of a C function :
void scopes ()
{
int a, b, c; /* level 1 */
.

 {
int a, b; /* level 2 */

 }
 {

float c, d; /* level 3 */
{

 int m; /* level 4 */

 }
 }
}
The symbol table could be represented by an upwards growing
stack as :

i. Initially the symbol table is empty.

ii. After the first three declarations, the symbol table will be

int
int
int

c
b
a

iii. After the second declaration of Level 2.

b
a
c
b
a

int
int
int
int
int

iv. As the control come out from Level 2.
int
int
int

c
b
a

v. When control will enter into Level 3.

SP–13 C (CS/IT-Sem-5)Compiler Design

d
c
c
b
a

float
float
int
int
int

vi. After entering into Level 4.

m
d
c
c
b
a

int
float
float
int
int
int

vii. On leaving the control from Level 4.

d
c
c
b
a

float
float
int
int
int

viii. On leaving the control from Level 3.
int
int
int

c
b
a

ix. On leaving the function entirely, the symbol table will be again
empty.

f. Write an algorithm to partition a sequence of three address
statements into basic blocks.

Ans. The algorithm for construction of basic block is as follows :
Input : A sequence of three address statements.
Output : A list of basic blocks with each three address statements
in exactly one block.
Method :

1. We first determine the set of leaders, the first statement of basic
block. The rules we use are given as :

a. The first statement is a leader.
b. Any statement which is the target of a conditional or unconditional

goto is a leader.
c. Any statement which immediately follows a conditional goto is a

leader.
2. For each leader construct its basic block, which consist of leader

and all statements up to the end of program but not including the

SP–14 C (CS/IT-Sem-5)Solved Paper (2016-17)

next leader. Any statement not placed in the block can never be
executed and may now be removed, if desired.

g. Discuss in detail the process of optimization of basic blocks.
Give an example.

Ans. Different issues in code optimization are :
1. Function preserving transformation : The function preserving

transformations are basically divided into following types :
a. Common sub-expression elimination :
i. A common sub-expression is nothing but the expression which is

already computed and the same expression is used again and again
in the program.

ii. If the result of the expression not changed then we eliminate
computation of same expression again and again.
For example :
Before common sub-expression elimination :
a = t * 4 – b + c;
........................
........................
m = t * 4 – b + c;
........................
........................
n = t * 4 – b + c;
After common sub-expression elimination :
temp = t * 4 – b + c;
a = temp;
........................
........................
m = temp;
........................
........................
n = temp;

iii. In given example, the equation a = t * 4 – b + c is occurred most of
the times. So it is eliminated by storing the equation into temp
variable.

b. Dead code elimination :
i. Dead code means the code which can be emitted from program and

still there will be no change in result.
ii. A variable is live only when it is used in the program again and

again. Otherwise, it is declared as dead, because we cannot use that
variable in the program so it is useless.

iii. The dead code occurred during the program is not introduced
intentionally by the programmer.
For example :
Define False = 0
!False = 1

SP–15 C (CS/IT-Sem-5)Compiler Design

If(!False)
{
........................
........................
}

iv. If false becomes zero, is guaranteed then code in ‘IF’ statement will
never be executed. So, there is no need to generate or write code
for this statement because it is dead code.

c. Copy propagation :
i. Copy propagation is the concept where we can copy the result of

common sub-expression and use it in the program.
ii. In this technique the value of variable is replaced and computation

of an expression is done at the compilation time.
For example :

pi = 3.14;
r = 5;

Area = pi * r * r;
Here at the compilation time the value of pi is replaced by 3.14 and r
by 5.

d. Constant folding (compile time evaluation) :
i. Constant folding is defined as replacement of the value of one

constant in an expression by equivalent constant value at the compile
time.

ii. In constant folding all operands in an operation are constant.
Original evaluation can also be replaced by result which is also a
constant.
For example : a = 3.14157/2 can be replaced by a = 1.570785
thereby eliminating a division operation.

2. Algebraic simplification :
a. Peephole optimization is an effective technique for algebraic

simplification.
b. The statements such as

x : = x + 0
or x : = x * 1
can be eliminated by peephole optimization.

h. How to sub-divide a run-time memory into code and data
areas ? Explain.

Ans. Sub-division of run-time memory into codes and data areas is shown
in Fig. 6.

SP–16 C (CS/IT-Sem-5)Solved Paper (2016-17)

Code

Static
Heap

Free Memory

Stack

Fig. 6.
1. Code : It stores the executable target code which is of fixed size and

do not change during compilation.
2. Static allocation :
a. The static allocation is for all the data objects at compile time.
b. The size of the data objects is known at compile time.
c. The names of these objects are bound to storage at compile time

only and such an allocation of data objects is done by static allocation.
d. In static allocation, the compiler can determine amount of storage

required by each data object. Therefore, it becomes easy for a
compiler to find the address of these data in the activation record.

e. At compile time, compiler can fill the addresses at which the target
code can find the data on which it operates.

3. Heap allocation : There are two methods used for heap
management :

a. Garbage collection method :
i. When all access path to a object are destroyed but data object

continue to exist, such type of objects are said to be garbaged.
ii. The garbage collection is a technique which is used to reuse that

object space.
iii. In garbage collection, all the elements whose garbage collection bit

is ‘on’ are garbaged and returned to the free space list.
b. Reference counter :
i. Reference counter attempt to reclaim each element of heap storage

immediately after it can no longer be accessed.
ii. Each memory cell on the heap has a reference counter associated

with it that contains a count of number of values that point to it.
iii. The count is incremented each time a new value point to the cell

and decremented each time a value ceases to point to it.
4. Stack allocation :
a. Stack allocation is used to store data structure called activation

record.
b. The activation records are pushed and popped as activations begins

and ends respectively.
c. Storage for the locals in each call of the procedure is contained in

the activation record for that call. Thus, locals are bound to fresh
storage in each activation, because a new activation record is pushed
onto the stack when call is made.

d. These values of locals are deleted when the activation ends.

SP–17 C (CS/IT-Sem-5)Compiler Design

Section-C

Attempt any two part of the following questions : (15 × 2 = 30)
3. Consider the following grammar

S  AS|b
A  SA|a
Construct the SLR parse table for the grammar. Show the
actions of the parser for the input string “abab”.

Ans. The augmented grammar is :
S  S
S  AS|b
A  SA|a

The canonical collection of LR(0) items are
Io : S • S

S • AS|• b
A • SA|• a

I1 = GOTO (I0, S)
I1 : S S • S AS|• b

A S • A
A  • SA|• a

I2 = GOTO (I0, A)
I2 : S A • S

S • AS|• b
A • SA|• a

I3 = GOTO (I0, b)
I3 : S b •

I4 = GOTO (I0, a)
I4 : A a •

I5 = GOTO (I1, A)
I5 : A SA •

I6 = GOTO (I1, S) = I1
I7 = GOTO (I1, a) = I4
I8 = GOTO (I2, S)
I8 : S  AS •

I9 = GOTO (I2, A) = I2
I10 = GOTO (I2, b) = I3

Let us numbered the production rules in the grammar as :
1. S  AS
2. S  b
3. A  SA
4. A  a

FIRST(S) = FIRST(A) = {a, b}

FOLLOW(S) ={$, a, b}

FOLLOW(A) = {a, b}

SP–18 C (CS/IT-Sem-5)Solved Paper (2016-17)

Table 1 : SLR parsing table.

Action Goto

States a b $ S A

I0 S4 S3 1 2

I1 S4 S3 accept 5

I2 S4 S3 8 2

I3 r2 r2 r2

I4 r4 r4

I5 r3 r3 r3

I8 r1 r1 r1

I0

I2A

S

I8

A
I1 I5

A

I4

I3
a

a

b

b

a
b

S

Fig. 7. DFA for set of items.
Table 2 : Parse the input abab using parse table.

Stack Input buffer Action

$0 abab$ Shift

$0a4 bab$ Reduce A  a

$0A2 bab$ Shift

$0A2b3 ab$ Reduce S  b

$0A2S8 ab$ Shift S  AS

$0S1 ab$ Shift

$0S1a4 b$ Reduce A  a

$0S1A5 b$ Reduce A  AS

$0A2 b$ Shift

$0A2b3 $ Reduce S  b

$0A2S8 $ Reduce S  AS

$0S1 $ Accept

SP–19 C (CS/IT-Sem-5)Compiler Design

S  id := E

E  E1 + E2

E  E1 * E2

E  – E1

E  (E1)

E  id

{ id_entry := look_up(id.name);
if id_entry  nil then

append (id_entry ‘:=’ E.place)
else error; /* id not declared*/

}

{ E.place := newtemp();
append (E.place ‘:=’ E1.place ‘+’ E2.place)

}

{ E.place := newtemp();
append (E.place ‘:=’ E1.place ‘*’ E2.place)

}

{ E.place := newtemp();
append (E.place ‘:=’ ‘minus’ E1.place)

}

{ E. place:= E1.place }

{ id_entry: = look_up(id.name);
if id_entry  nil then

append (id_entry ‘:=’ E.place)
else error; /* id not declared*/

}

4. How would you convert the following into intermediate
code ? Give a suitable example.

i. Assignment statements
ii. Case statements

Ans.
i. Assignment statements :

Production rule Semantic actions

1. The look_up returns the entry for id.name in the symbol table if it
exists there.

2. The function append is used for appending the three address code
to the output file. Otherwise, an error will be reported.

3. Newtemp() is the function used for generating new temporary
variables.

4. E.place is used to hold the value of E.
Example : x := (a + b)*(c + d)
We will assume all these identifiers are of the same type. Let us
have bottom-up parsing method :

SP–20 C (CS/IT-Sem-5)Solved Paper (2016-17)

E  id

E  id

E  E1 + E2

E  id

E  id

E  E1 + E2

E  E1 * E2

S  id := E

E.place := a

E.place := b

E.place := t1

E.place := c

E.place := d

E.place := t2

E.place := t3

t1 := a + b

t2 := c + d

t3 := (a + b)*(c + d)

x := t3

Switch E
{

case v1 : s1
case v2 : s2

...
case vn–1 : sn–1
default : sn

}

Evaluate E into t such that t = E
goto check
L1 : code for s1

goto last
L2 : code for s2

goto last

Ln : code for sn
goto last

check : if t = v1 goto L1
if t = v2 goto L2

...
if t = vn–1 goto Ln–1
goto Ln

last

Production rule Semantic action Output
attribute evaluation

ii. Case statements :

Production rule Semantic action

switch expression
{
case value : statement
case value : statement

...
case value : statement
default : statement
}
Example :
switch(ch)

SP–21 C (CS/IT-Sem-5)Compiler Design

{
case 1 : c = a + b;
break;
case 2 : c = a – b;
break;

}
The three address code can be
if ch = 1 goto L1
if ch = 2 goto L2
L1 : t1

 := a + b
c := t1
goto last
L2 : t2 := a – b

c := t2
goto last

last :

5. Define a directed acyclic graph. Construct a DAG and write
the sequence of instructions for the expression :
a + a * (b – c) + (b – c) * d.

Ans. DAG :
1. The abbreviation DAG stands for Directed Acyclic Graph.
2. DAGs are useful data structure for implementing transformations

on basic blocks.
3. A DAG gives picture of how the value computed by each statement

in the basic block is used in the subsequent statement of the
block.

4. Constructing a DAG from three address statement is a good way
of determining common sub-expressions within a block.

5. A DAG for a basic block has following properties :
a. Leaves are labeled by unique identifier, either a variable name or

constants.
b. Interior nodes are labeled by an operator symbol.
c. Nodes are also optionally given a sequence of identifiers for labels.
6. Since, DAG is used in code optimization and output of code

optimization is machine code and machine code uses register to
store variable used in the source program.
Numerical :
Given expression : a + a * (b – c) + (b – c) * d
The construction of DAG with three address code will be as follows :

t = b – c1Step 1 : –
t1

b c

SP–22 C (CS/IT-Sem-5)Solved Paper (2016-17)

t = (b – c) * d 2Step 2 : *
t2

–

b c

d

t = a * (b – c) 3Step 3 : *
t3

–

cb

a

t = a * (b – c) + (b – c) * d 4Step 4 : +
t4

*

ad

*

–

b c

t = a + a * (b – c) + (b – c) * d 5Step 5 :

+

*

ad

*

–

b c

+
t5

a



SP–1 C (CS/IT-Sem-5)Compiler Design

B. Tech.
(SEM. VI) EVEN SEMESTER THEORY

EXAMINATION, 2017-18
COMPILER DESIGN

Time : 3 Hours Max. Marks : 100

Note : 1. Attempt all Sections. If require any missing data; then choose
suitably.

2. Any special paper specific instruction.

SECTION-A

1. Attempt all questions in brief. (2 × 10 = 20)
a. What is translator ?

b. Differentiate between compiler and assembler.

c. Discuss conversion of NFA into a DFA. Also give the
algorithm used in this conversion.

d. Write down the short note on symbol table.

e. Describe data structure for symbol table.

f. What is mean by activation record ?

g. What is postfix notations ?

h. Define three address code.

i. What are quadruples ?

j. What do you mean by regular expression?

SECTION-B

2. Attempt any three of the following : (10 × 3 = 30)
a. Write down the regular expression for
1. The set of all string over {a, b} such that fifth symbol from

right is a.
2. The set of all string over {0, 1} such that every block of four

consecutive symbol contain at least two zero.

SP–2 C (CS/IT-Sem-5)Solved Paper (2017-18)

b. Construct the NFA for the regular expression a|abb|a*b+

by using Thompson’s construction methodology.

c. Eliminate left recursion from the following grammar
S  AB, A  BS|b, B  SA|a

d. Discuss conversion of NFA into a DFA. Also give the
algorithm used in this conversion.

e. Explain non-recursive predictive parsing. Consider the
following grammar and construct the predictive parsing
table
E  TE
E  + TE|
T  FT
T  *FT|
F  F*|a|b

SECTION-C

3. Attempt any one part of the following : (10 × 1 = 10)
a. Give operator precedence parsing algorithm. Consider the

following grammar and build up operator precedence table.
Also parse the input string (id + (id * id))
E  E + T|T
T  T * F|F
F (E)|id

b. For the grammar
S  aAd |bBd |aBe | bAe A  f, B  f
Construct LR(1) parsing table. Also draw the LALR table
from the derived LR(1) parsing table.

4. Attempt any one part of the following : (10 × 1 = 10)
a. What is postfix notations ? Translate (C + D)*(E + Y) into

postfix using Syntax Directed Translation Scheme (SDTS).

b. Consider the following grammar E  E + E | E*E|(E)|id.
Construct the SLR parsing table and suggest your final
parsing table.

5. Attempt any one part of the following : (10 × 1 = 10)
a. Explain logical phase error and syntactic phase error. Also

suggest methods for recovery of error.

SP–3 C (CS/IT-Sem-5)Compiler Design

b. Generate three address code for
C[A[i, j]] = B[i, j] + C[A[i, j]] + D[i, j] (You can assume any
data for solving question, if needed). Assuming that all
array elements are integer. Let A and B a 10 × 20 array with
low1 = low = 1.

6. Attempt any one part of the following : (10 × 1 =10)
a. Give the algorithm for the elimination of local and global

common sub-expressions algorithm with the help of
example.

b. Consider the following three address code segments :
PROD : = 0
l : = 1
T1 : = 4*l
T2 : = addr(A) – 4
T3 : = T2 [T1]
T4 : = addr(B) – 4
T5 : = T4[T1]
T6 : = T3*T5
PROD : = PROD + T6
l : = l + 1
If i < = 20 goto (3)

a. Find the basic blocks and flow graph of above sequence.
b. Optimize the code sequence by applying function preserving

transformation optimization technique.

7. Attempt any one part of the following : (10 × 1 = 10)
a. Write short note on :
i. Loop optimization

ii. Global data analysis

b. Write short note on :
i. Direct acyclic graph

ii. YACC parser generator



SP–4 C (CS/IT-Sem-5)Solved Paper (2017-18)

1. It converts high level
language into machine
language.

2. Debugging is slow.

3. It is used by C, C++.

It converts assembly language into
machine language.

Debugging is fast.

It is used by assembly language.

SOLUTION OF PAPER (2017-18)

Note : 1. Attempt all Sections. If require any missing data; then choose
suitably.

2. Any special paper specific instruction.

SECTION-A

1. Attempt all questions in brief. (2 × 10 = 20)
a. What is translator ?

Ans. A translator takes a program written in a source language as input
and converts it into a program in target language as output.

b. Differentiate between compiler and assembler.
Ans.

S. No. Compiler Assembler

c. Discuss conversion of NFA into a DFA. Also give the
algorithm used in this conversion.

Ans. Conversion from NFA to DFA :
Suppose there is an NFA N < Q, , q0, , F > which recognizes a
language L. Then the DFA D < Q', , q0, , F > can be constructed
for language L as :
Step 1 : Initially Q = .
Step 2 : Add q0 to Q.
Step 3 : For each state in Q, find the possible set of states for each
input symbol using transition function of NFA. If this set of states is
not in Q, add it to Q.
Step 4 : Final state of DFA will be all states which contain F (final
states of NFA).

d. Write down the short note on symbol table.
Ans. A symbol table is a data structure used by a compiler to keep track

of scope, life and binding information about names. These names
are used in the source program to identify the various program
elements, like variables, constants, procedures, and the labels of
statements.

e. Describe data structure for symbol table.

SP–5 C (CS/IT-Sem-5)Compiler Design

Ans. Data structures for symbol table are :
1. Unordered list
2. Ordered list
3. Search tree
4. Hash tables and hash functions

f. What is mean by activation record ?
Ans. Activation record is a data structure that contains the important

state information for a particular instance of a function call.

g. What is postfix notations ?
Ans. Postfix notation is the type of notation in which operator are placed

at the right end of the expression. For example, to add A and B, we
can write as AB+ or BA+.

h. Define three address code.
Ans. Three address code is an abstract form of intermediate code that

can be implemented as a record with the address fields. The general
form of three address code representation is :

a = b op c.

i. What are quadruples ?
Ans. Quadruples are structure with at most four fields such as op, arg1,

arg2, result.

j. What do you mean by regular expression?
Ans. Regular expressions are mathematical symbolisms which describe

the set of strings of specific language. It provides convenient and
useful notation for representing tokens.

SECTION-B

2. Attempt any three of the following : (10 × 3 = 30)
a. Write down the regular expression for
1. The set of all string over {a, b} such that fifth symbol from

right is a.
2. The set of all string over {0, 1} such that every block of four

consecutive symbol contain at least two zero.
Ans.

1. DFA for all strings over {a, b} such that fifth symbol from right is a :
Regular expression : (a + b)* a (a + b) (a + b) (a + b) (a + b)

2. Regular expression :
[00(0 + 1) (0 + 1) 0(0 + 1) 0(0 + 1) + 0(0 + 1) (0 + 1)0 + (0 + 1) 00(0 +1)

+ (0 + 1)0(0 + 1) 0 + (0 + 1) (0 + 1)00]

b. Construct the NFA for the regular expression a|abb|a*b+

by using Thompson’s construction methodology.

SP–6 C (CS/IT-Sem-5)Solved Paper (2017-18)

Ans. Given regular expression : a + abb + a*b+

Step 1 : q1 qf
a + abb + a*b

+

Step 2 :

b

q1
a

q2
bq3

q4

a

qf

b
+

a*









Step 3 :



aq1



q2 q3

q5

b b

q6

q4
b

a
b

a



qf

c. Eliminate left recursion from the following grammar
S  AB, A  BS|b, B  SA|a

Ans.
S  AB
A  BS|b
B  SA|a
S  AB
S  BSB|bB

S    
1 2

| |
A

S ASB aSB bB
  

S  aSBS|bBS
S  ASBS|
B  ABA|a
B   

1 2

| |B ABBA bBA a
 



B  bBA B |aB
B ABBA B|
A  BS|a
A  SAS|aS|a
A   

1 2

| |A BAAB aAB a
 



A  aAB A |aA

A BAAB A|

The production after left recursion is

S  aSB S |bBS

S ASB S|

SP–7 C (CS/IT-Sem-5)Compiler Design

A  aABA|aA

A  BAABA|

B bBA B|aB
B  ABBA B|

d. Discuss conversion of NFA into a DFA. Also give the
algorithm used in this conversion.

Ans. Conversion from NFA to DFA :
Suppose there is an NFA N < Q, , q0, , F > which recognizes a
language L. Then the DFA D < Q', , q0, , F > can be constructed
for language L as :
Step 1 : Initially Q = .
Step 2 : Add q0 to Q.
Step 3 : For each state in Q, find the possible set of states for each
input symbol using transition function of NFA. If this set of states is
not in Q, add it to Q.
Step 4 : Final state of DFA will be all states which contain F (final
states of NFA).

e. Explain non-recursive predictive parsing. Consider the
following grammar and construct the predictive parsing
table
E  TE
E  + TE|
T  FT
T  *FT|
F  F*|a|b

Ans. Non-recursive descent parsing (Predictive parsing) :
1. A predictive parsing is an efficient way of implementing recursive-

descent parsing by handling the stack of activation records
explicitly.

2. The predictive parser has an input, a stack, a parsing table, and an
output. The input contains the string to be parsed, followed by $,
the right end-marker.

Parsing
Table

Predictive
parsing
program

Output

Inputa + b $

X
Y
Z
$

Stack

Fig. 1. Model of a predictive parser.

SP–8 C (CS/IT-Sem-5)Solved Paper (2017-18)

3. The stack contains a sequence of grammar symbols with $
indicating button of the stack. Initially, the stack contains the
start symbol of the grammar preceded by $.

4. The parsing table is a two-dimensional array M [A, a] where ‘A’ is
a non-terminal and ‘a’ is a terminal or the symbol $.

5. The parser is controlled by a program that behaves as follows :
The program determines X symbol on top of the stack, and ‘a’ the
current input symbol. These two symbols determine the action of
the parser.

6. Following are the possibilities :
a. If X = a= $, the parser halts and announces successful

completion of parsing.
b. If X = a  $, the parser pops X off the stack and advances the

input pointer to the next input symbol.
c. If X is a non-terminal, the program consults entry M[X, a] of

the parsing table M. This entry will be either an X-production
of the grammar or an error entry.

Numerical :
E  TE 

E  + TE |

T  FT 

T  *F T |

F  F*|a|b

First we remove left recursion

F  F   
1 2

| |* a b
  

F  aF |bF 

F *F |

FIRST(E) = FIRST(T) = FIRST(F) = {a, b}

FIRST(E ) = { +, }, FIRST(F ) = {*, }

FIRST(T ) = {*, }

FOLLOW(E) = { $ }

FOLLOW(E) = { $ }

FOLLOW(T) = {+, $ }

FOLLOW(T) = {+, $ }

FOLLOW(F) = {*, +, $ }

FOLLOW(F) = {*, +, $ }

SP–9 C (CS/IT-Sem-5)Compiler Design

Predictive parsing table :

Non-terminal Input symbol

+ * a b $

E E  TE E  TE

E  E  + TE E  

T T  FT T  FT

T  T   T  *FT T  

F F  aF  F  bF 

F  F    F    F   
F   *F 

SECTION-C

3. Attempt any one part of the following : (10 × 1 = 10)
a. Give operator precedence parsing algorithm. Consider the

following grammar and build up operator precedence table.
Also parse the input string (id + (id * id))
E  E + T|T
T  T * F|F
F (E)|id

Ans. Operator precedence parsing algorithm :
Let the input string be a1, a2,....., an $. Initially, the stack contains $.

1. Set p to point to the first symbol of w$.
2. Repeat : Let a be the topmost terminal symbol on the stack and let

b be the current input symbol.
i. If only $ is on the stack and only $ is the input then accept and

break.
else
begin

ii. If a >· b or a =. b then shift a onto the stack and increment p to next
input symbol.

iii. else if a <· b then reduce b from the stack
iv. Repeat :

c  pop the stack
v. Until the top stack terminal is related by >· to the terminal most

recently popped.
else

vi. Call the error correcting routine
end

SP–10 C (CS/IT-Sem-5)Solved Paper (2017-18)

Operator precedence table :
* () id $

· · · · · ·
* · · · · · ·
(· · · ·
) · · · ·

id · · · ·
$ · · · ·


      

     
   
   
   
   



Parsing :

$(< · id > + (< · id · > * < · id · >))$ Handle id is obtained between < · · >
Reduce this by F  id

(F + (< · id · > * < · id · >))$ Handle id is obtained between < · · >
Reduce this by F  id

(F + (F * < · id · >))$ Handle id is obtained between < · · >
Reduce this by F  id

(F + (F * F)) Remove all the non-terminals.

(+(*)) Insert $ at the beginning and at the
end.

Also insert the precedence operators.

$(< · + · >(< · * · >)) $ The * operator is surrounded by < · · >.
This indicates that * becomes handle.
That means we have to reduce T*F
operation first.

$ < · + · > $ Now + becomes handle. Hence we
evaluate E + T.

$ $ Parsing is done.

b. For the grammar
S  aAd |bBd |aBe | bAe A  f, B  f
Construct LR(1) parsing table. Also draw the LALR table
from the derived LR(1) parsing table.

Ans. Augmented grammar :
S  S
S  aAd|bBd| aBe|bAe
A  f
B  f

Canonical collection of LR(1) grammar :
I0 : S •S, $

S  •aAd, $
S  •bBd, $

SP–11 C (CS/IT-Sem-5)Compiler Design

S  •aBe, $

S  •bAe, $

A  •f, d/e

B  •f, d/e

I1 : = GOTO(I0, S)

I1: S •S, $

I2 : = GOTO(I0, a)

I2 : S  a•Ad, $

S  aBe, $

A  •f, d

B  •f, e

I3 : = GOTO(I0, b)

I3 : S  b•Bd, $

S  b•Ae, $

A  •f, d

B  •f, e

I4 : = GOTO(I2, A)

I4 : S aA•d, $

I5 : = GOTO(I2, B)

I5 : S aB•d, $

I6 : = GOTO(I2, f)

I6 : A  f•, d

B  f•, e

I7 : = GOTO(I3, B)

I7 : S bB•d, $

I8 : = GOTO(I3, A)
I8 : S bA•e, $
I9 : = GOTO(I3, f)
I9 : A  f•, d

B  f•, e
I10 : = GOTO(I4, d)
I10 : S aAd• , $
I11 : = GOTO(I5, d)
I11 : S aBd• , $
I12 : = GOTO(I7, d)
I12 : S bBd• , $

I13 : = GOTO(I8, e)

I13 : S bAe• , $

SP–12 C (CS/IT-Sem-5)Solved Paper (2017-18)

LR(1) parsing table :

State Action Goto

a b d e f $ A B S

I0 S2 S3 1

I1 accept

I2 S6 4 5

I3 S9 7 8

I4 r10

I5 r11

I6 r6

I7 r12

I8 r13

I9

I10 r1

I11 r3

I12 r2

I13 r4

No, two states can be merged. So, LALR table cannot be constructed
from LR(1) parsing table.

4. Attempt any one part of the following : (10 × 1 = 10)
a. What is postfix notations ? Translate (C + D)*(E + Y) into

postfix using Syntax Directed Translation Scheme (SDTS).
Ans. Postfix notation :

It is the type of translation in which the operator symbol is placed
after its two operands.
Numerical : Syntax directed translation scheme to specify the
translation of an expression into postfix notation are as follow :
Production :

E  E1 + T
E1  T
T  T1 × F

T1  F
F  (E)
F  id

SP–13 C (CS/IT-Sem-5)Compiler Design

Schemes :
E.code = E1.code ||T1code || ‘+’

E1.code = T.code
T1.code = T1.code ||F.code || ‘×’
T1.code = F.code
F.code = E.code
F.code = id.code

where ‘||’ sign is used for concatenation.

b. Consider the following grammar E  E + E | E*E|(E)|id.
Construct the SLR parsing table and suggest your final
parsing table.

Ans. The augmented grammar is as :
E  E
E  E + E
E  E * E
E  (E)
E  id

The set of LR(0) items is as follows :
I0 : E  •E

E  •E + E
E  •E * E
E  •(E)
E  •id

I1 = GOTO (I0, E)
I1 : E  E•

E  E• + E
E  E•* E

I2 = GOTO (I0, ()
I2 : E  (•E)

E  •E + E
E  •E * E
E  •(E)
E  •id

I3 = GOTO (I0, id)
I3 : E  id•
I4 = GOTO (I1, +)
I4 : E  E + •E

E  •E + E
E  •E * E
E  •(E)
E  •id

I5 = GOTO (I1, *)
I5 : E  E * •E

E  •E + E

SP–14 C (CS/IT-Sem-5)Solved Paper (2017-18)

E  •E * E
E  •(E)
E  •id

I6 = GOTO (I2, E)

I6 : E  (E•)

E  E• + E
E  E• * E

I7 = GOTO (I4, E)

I7 : E  E + E•

E  E• + E
E  E• * E

I8 = GOTO (I5, E)

I8 : E  E * E•

E  E• + E
E  E• * E

I9 = GOTO (I6,))

I9 : E  (E)•

SLR parsing table :

Action Goto

State id + * () $ E

0 S3 S2 1

1 S4 S5 accept

2 S3 S2 6

3 r4 r4 r4 r4

4 S3 S2 8

5 S3 S2 8

6 S4 S5 S3

7 r1 S5 r1 r1

8 r2 r2 r2 r2

9 r3 r3 r3 r3

5. Attempt any one part of the following : (10 × 1 = 10)
a. Explain logical phase error and syntactic phase error. Also

suggest methods for recovery of error.
Ans. Logical phase error : Logical errors are the logical mistakes

founded in the program which is not handled by the compiler.

SP–15 C (CS/IT-Sem-5)Compiler Design

Syntactic phase error : Syntactic errors are those errors which
occur due to the mistake done by the programmer during coding
process.
Various error recovery methods are :

1. Panic mode recovery :
a. This is the simplest method to implement and used by most of

the parsing methods.
b. When parser detect an error, the parser discards the input

symbols one at a time until one of the designated set of
synchronizing token is found.

c. Panic mode correction often skips a considerable amount of
input without checking it for additional errors. It gives
guarantee not to go in infinite loop.

For example :
Let consider a piece of code :
a = b + c;
d = e + f;
By using panic mode it skips a = b + c without checking the error in
the code.

2. Phrase-level recovery :
a. When parser detects an error the parser may perform local

correction on remaining input.
b. It may replace a prefix of the remaining input by some string

that allows parser to continue.
c. A typical local correction would replace a comma by a semicolon,

delete an extraneous semicolon or insert a missing semicolon.
For example :
Let consider a piece of code
while (x > 0) y = a + b;
In this code local correction is done by phrase-level recovery by
adding ‘do’ and parsing is continued.

3. Error production : If error production is used by the parser, we
can generate appropriate error message and parsing is continued.
For example :
Let consider a grammar
E  + E|– E| * A|/A
A  E
When error production encounters * A, it sends an error message
to the user asking to use ‘*’ as unary or not.

4. Global correction :
a. Global correction is a theoretical concept.
b. This method increases time and space requirement during

parsing.

SP–16 C (CS/IT-Sem-5)Solved Paper (2017-18)

b. Generate three address code for
C[A[i, j]] = B[i, j] + C[A[i, j]] + D[i, j] (You can assume any
data for solving question, if needed). Assuming that all
array elements are integer. Let A and B a 10 × 20 array with
low1 = low = 1.

Ans. Given : low1 = 1 and low = 1, n1 = 10, n2 = 20.
B[i, j] = ((i × n2) +j) × w + (base – ((low1 × n2) + low) × w)
B[i, j] = ((i × 20) +j) × 4 + (base – ((1 × 20) + 1) × 4)
B[i, j] = 4 × (20 i + j) + (base – 84)

Similarly, A[i, j] = 4 × (20 i + j) + (base – 84)
and, D[i, j] = 4 × (20 i + j) + (base – 84)

Hence, C[A[i, j]] = 4 × (20 i + j) + (base – 84) + 4 × (20 i + j) +
(base – 84) + 4 × (20 i + j) + (base – 84)

= 4 × (20 i + j) + (base – 84) [1 + 1 + 1]
= 4 × 3 × (20 i + j) + (base – 84) × 3
= 12 × (20 i + j) + (base – 84) × 3

Therefore, three address code will be
t1 = 20 × i
t2 = t1 + j
t3 = base – 84
t4 = 12 × t2
t5 = t4 + 3 × t3

6. Attempt any one part of the following : (10 × 1 =10)
a. Give the algorithm for the elimination of local and global

common sub-expressions algorithm with the help of
example.

Ans. Algorithm for elimination of local common sub-expression :
DAG algorithm is used to eliminate local common sub-expression.
DAG :

1. The abbreviation DAG stands for Directed Acyclic Graph.
2. DAGs are useful data structure for implementing transformations

on basic blocks.
3. A DAG gives picture of how the value computed by each statement

in the basic block is used in the subsequent statement of the
block.

4. Constructing a DAG from three address statement is a good way
of determining common sub-expressions within a block.

5. A DAG for a basic block has following properties :
a. Leaves are labeled by unique identifier, either a variable name or

constants.
b. Interior nodes are labeled by an operator symbol.
c. Nodes are also optionally given a sequence of identifiers for labels.
6. Since, DAG is used in code optimization and output of code

optimization is machine code and machine code uses register to
store variable used in the source program.

SP–17 C (CS/IT-Sem-5)Compiler Design

Algorithm for elimination of global common sub-expressions :
1. An expression is defined at the point where it is assigned a value

and killed when one of its operands is subsequently assigned a new
value.

2. An expression is available at some point p in a flow graph if every
path leading to p contains a prior definition of that expression which
is not subsequently killed.

3. Following expressions are used :
a.avail[B] = set of expressions available on entry to block B
b.exit[B] = set of expressions available on exit from B

c. killed[B] = set of expressions killed in B
d.defined[B] = set of expressions defined in B

e. exit[B] = avail[B] – killed[B] + defined[B]
Algorithm :

1. First, compute defined and killed sets for each basic block
2. Iteratively compute the avail and exit sets for each block by running

the following algorithm until we get a fixed point:
a. Identify each statement s of the form a = b op c in some block B

such that b op c is available at the entry to B and neither b nor c is
redefined in B prior to s.

b. Follow flow of control backwards in the graph passing back to but
not through each block that defines b op c. the last computation of
b op c in such a block reaches s.

c. After each computation d = b op c identified in step 2(a), add
statement t = d to that block (where t is a new temp d).

d. Replace s by a = t

b. Consider the following three address code segments :
PROD : = 0
l : = 1
T1 : = 4*l
T2 : = addr(A) – 4
T3 : = T2 [T1]
T4 : = addr(B) – 4
T5 : = T4[T1]
T6 : = T3*T5
PROD : = PROD + T6
l : = l + 1
If i < = 20 goto (3)

a. Find the basic blocks and flow graph of above sequence.
b. Optimize the code sequence by applying function preserving

transformation optimization technique.
Ans.

a. Basic blocks and flow graph :
1. As first statement of program is leader statement.

 PROD = 0 is a leader.
2. Fragmented code represented by two blocks is shown below :

SP–18 C (CS/IT-Sem-5)Solved Paper (2017-18)

PROD = 0
I = 1

T = addr(A) – 42

T = addr(B) – 44

T = 4 * I1

T = T [T]3 12

T = T [T]5 4 1
T = T * T6 3 5
PROD = PROD + T6
I = I + 1
If I <= 20 goto B2

B1

B2

Fig. 2.
b. Function preserving transformation :
1. Common sub-expression elimination : No any block has any

sub expression which is used two times. So, no change in flow
graphs.

2. Copy propagation : No any instruction in the block B2 is direct
assignment i.e., in the form of x = y. So, no change in flow graph
and basic block.

3. Dead code elimination : No any instruction in the block B2 is
dead. So, no change in flow graph and basic block.

4. Constant folding : No any constant expression is present in basic
block. So, no change in flow graph and basic block.

7. Attempt any one part of the following : (10 × 1 = 10)
a. Write short note on :
i. Loop optimization

Ans. Loop optimization is a process of increasing execution time and
reducing the overhead associated with loops.
The loop optimization is carried out by following methods :

1. Code motion :
a. Code motion is a technique which moves the code outside

the loop.
b. If some expression in the loop whose result remains unchanged

even after executing the loop for several times, then such
an expression should be placed just before the loop (i.e.,
outside the loop).

c. Code motion is done to reduce the execution time of the
program.

2. Induction variables :
a. A variable x is called an induction variable of loop L if the

value of variable gets changed every time.
b. It is either decremented or incremented by some constant.

SP–19 C (CS/IT-Sem-5)Compiler Design

3. Reduction in strength :
a. In strength reduction technique the higher strength operators

can be replaced by lower strength operators.
b. The strength of certain operator is higher than other.
c. The strength reduction is not applied to the floating point

expressions because it may yield different results.
4. Loop invariant method : In loop invariant method, the

computation inside the loop is avoided and thereby the computation
overhead on compiler is avoided.

5. Loop unrolling : In this method, the number of jumps and tests
can be reduced by writing the code two times.
For example :

int i = 1;
while(i<=100)
{

a[i]=b[i];
i++;

}

int i = 1;
while(i<=100)
{

a[i]=b[i];
i++;
a[i]=b[i];
i++ ;

}

Can be written as

6. Loop fusion or loop jamming : In loop fusion method, several
loops are merged to one loop.
For example :

for i:=1 to n do
for j:=1 to m do
a[i,j]:=10

for i:=1 to n*m do
a[i]:=10

Can be written as

ii. Global data analysis
Ans. Global data flow analysis :

1. Global data flow analysis collects the information about the entire
program and distributed it to each block in the flow graph.

2. Data flow can be collected in various block by setting up and solving
a system of equation.

3. A data flow equation is given as :
OUT(s) = {IN(s) – KILL(s)}  GEN(s)

OUT(s) : Definitions that reach exist of block B.
GEN(s) : Definitions within block B that reach the end of B.
IN(s) : Definitions that reaches entry of block B.
KILL(s) : Definitions that never reaches the end of block B.

b. Write short note on :
i. Direct acyclic graph

Ans.
1. The abbreviation DAG stands for Directed Acyclic Graph.

SP–20 C (CS/IT-Sem-5)Solved Paper (2017-18)

2. DAGs are useful data structure for implementing transformations
on basic blocks.

3. A DAG gives picture of how the value computed by each statement
in the basic block is used in the subsequent statement of the
block.

4. Constructing a DAG from three address statement is a good way
of determining common sub-expressions within a block.

5. A DAG for a basic block has following properties :
a. Leaves are labeled by unique identifier, either a variable name

or constants.
b. Interior nodes are labeled by an operator symbol.
c. Nodes are also optionally given a sequence of identifiers for

labels.
6. Since, DAG is used in code optimization and output of code

optimization is machine code and machine code uses register to
store variable used in the source program.

ii. YACC parser generator
Ans. YACC parser generator :

1. YACC (Yet Another Compiler - Compiler) is the standard parser
generator for the Unix operating system.

2. An open source program, YACC generates code for the parser in
the C programming language.

3. It is a Look Ahead Left-to-Right (LALR) parser generator, generating
a parser, the part of a compiler that tries to make syntactic sense of
the source code.



SP–1 C (CS/IT-Sem-5)Compiler Design

B. Tech.
(SEM. VI) EVEN SEMESTER THEORY

EXAMINATION, 2018-19
COMPILER DESIGN

Time : 3 Hours Max. Marks : 100

Note : 1. Attempt all Sections. If require any missing data; then choose
suitably.

SECTION-A

1. Attempt all questions in brief. (2 × 7 = 14)
a. What are the two parts of a compilation ? Explain briefly.

b. What is meant by viable prefixes ?

c. What are the classifications of a compiler ?

d. List the various error recovery strategies for a lexical
analysis.

e. What is dangling else problem ?

f. What are the various types of intermediate code
representation ?

g. Define peephole optimization.

SECTION-B

2. Attempt any three of the following : (7 × 3 = 21)
a. Write the quadruples, triple and indirect triple for the

following expression :
(x + y) * (y + z) + (x + y + z)

b. What are the problems with top-down parsing ? Write the
algorithm for FIRST and FOLLOW.

c. Perform shift reduce parsing for the given input strings
using the grammar

S  (L)|a
L  L, S|S

SP–2 C (CS/IT-Sem-5)Solved Paper (2018-19)

i. (a, (a, a))
ii. (a, a)

d. What is global data flow analysis ? How does it use in code
optimization ?

e. Construct LR(0) parsing table for the following grammar
S  cB|ccA
A  cA|a
B  ccB|b

SECTION-C

3. Attempt any one part of the following : (7 × 1 = 7)
a. Convert following NFA to equivalent DFA and hence

minimize the number of states in the DFA.

q2q1q0



b
a. c

b. c

. c

Fig. 1.

b. Explain the various parameter passing mechanisms of a
high level language.

4. Attempt any one part of the following : (7 × 1 = 7)
a. How would you represent the following equation using

DAG ?
a = b * – c + b * – c

b. Distinguish between static scope and dynamic scope. Briefly
explain access to non-local names in static scope.

5. Attempt any one part of the following : (7 × 1 = 7)
a. Write short notes on the following with the help of example :
i. Loop unrolling

ii. Loop jamming
iii. Dominators
iv. Viable prefix

b. Draw the format of activation record in stack allocation
and explain each field in it.

SP–3 C (CS/IT-Sem-5)Compiler Design

6. Attempt any one part of the following : (7 × 1 = 7)
a. Write down the translation procedure for control statement

and switch statement.

b. Define syntax directed translation. Construct an annotated
parse tree for the expression (4 * 7 + 1) * 2, using the simple
desk calculator grammar.

7. Attempt any one part of the following : (7 × 1 = 7)
a. Explain in detail the error recovery process in operator

precedence parsing method.

b. Explain what constitute a loop in flow graph and how will
you do loop optimizations in code optimization of a
compiler.



SP–4 C (CS/IT-Sem-5)Solved Paper (2018-19)

SOLUTION OF PAPER (2018-19)

Note : 1. Attempt all Sections. If require any missing data; then choose
suitably.

SECTION-A

1. Attempt all questions in brief. (2 × 7 = 14)
a. What are the two parts of a compilation ? Explain briefly.

Ans. Two parts of a compilation are :
1. Analysis part : It breaks up the source program into constituent

pieces and creates an intermediate representation of source
program.

2. Synthesis part : It constructs the desire target program from the
intermediate representation.

b. What is meant by viable prefixes ?
Ans. Viable prefixes are the prefixes of right sentential forms that can

appear on the stack of a shift-reduce parser.

c. What are the classifications of a compiler ?
Ans. Classification of a compiler :

1. Single pass compiler
2. Two pass compiler
1. Multiple pass compiler

d. List the various error recovery strategies for a lexical
analysis.

Ans. Error recovery strategies are :
1. Panic mode recovery
2. Phrase level recovery
3. Error production
4. Global correction

e. What is dangling else problem ?
Ans. Dangling else problem is the problem is which compiler always

associates an ‘else’ with the immediately preceding ‘if’ which causes
ambiguity. This problem arises in a nested if statement, where
number of if’s is more than the number of else clause.

f. What are the various types of intermediate code
representation ?

Ans. Different forms of intermediate code are :
i. Abstract syntax tree
ii. Polish (prefix/postfix) notation

iii. Three address code

SP–5 C (CS/IT-Sem-5)Compiler Design

g. Define peephole optimization.
Ans. Peephole optimization is a type of code optimization performed on a

small part of the code. It is performed on the very small set of
instructions in a segment of code. The small set of instructions or
small part of code on which peephole optimization is performed is
known as peephole.

SECTION-B

2. Attempt any three of the following : (7 × 3 = 21)
a. Write the quadruples, triple and indirect triple for the

following expression :
(x + y) * (y + z) + (x + y + z)

Ans. The three address code for given expression :
t1 := x + y
t2 := y + z
t3 := t1* t2
t4 := t1 + z
t5 := t3 + t4

i. The quadruple representation :

Location Operator Operand 1 Operand 2 Result

(1) + x y t1
(2) + y z t2
(3) * t1 t2 t3
(4) + t1 z t4
(5) + t3 t4 t5

ii. The triple representation :

Location Operator Operand 1 Operand 2

(1) + x y
(2) + y z
(3) * (1) (2)
(4) + (1) z
(5) + (3) (4)

iii. The indirect triple representation :

Location Operator Operand 1 Operand 2 Location Statement

(1) + x y (1) (11)
(2) + y z (2) (12)
(3) * (11) (12) (3) (13)
(4) + (11) z (4) (14)
(5) + (13) (14) (5) (15)

SP–6 C (CS/IT-Sem-5)Solved Paper (2018-19)

b. What are the problems with top-down parsing ? Write the
algorithm for FIRST and FOLLOW.

Ans. Problems with top-down parsing :
1. Backtracking :
a. Backtracking is a technique in which for expansion of non-terminal

symbol, we choose alternative and if some mismatch occurs then
we try another alternative if any.

b. If for a non-terminal, there are multiple production rules beginning
with the same input symbol then to get the correct derivation, we
need to try all these alternatives.

c. Secondly, in backtracking, we need to move some levels upward in
order to check the possibilities. This increases lot of overhead in
implementation of parsing.

d. Hence, it becomes necessary to eliminate the backtracking by
modifying the grammar.

2. Left recursion :
a. The left recursive grammar is represented as :

A


 A 

b. Here


 means deriving the input in one or more steps.
c. Here, A is a non-terminal and  denotes some input string.
d. If left recursion is present in the grammar then top-down parser

can enter into infinite loop.

A

A

A

A

A A

A

A

Subtree

Fig. 1.
e. This causes major problem in top-down parsing and therefore

elimination of left recursion is must.
3. Left factoring :
a. Left factoring is occurred when it is not clear that which of the two

alternatives is used to expand the non-terminal.
b. If the grammar is not left factored then it becomes difficult for the

parser to make decisions.
Algorithm for FIRST and FOLLOW :

1. FIRST function :
i. FIRST (X) is a set of terminal symbols that are first symbols

appearing at R.H.S. in derivation of X.
ii. Following are the rules used to compute the FIRST functions.
a. If X determine terminal symbol ‘a’ then the FIRST(X) = {a}.

SP–7 C (CS/IT-Sem-5)Compiler Design

b. If there is a rule X   then FIRST(X) contain {}.
c. If X is non-terminal and X Y1 Y2 Y3 ... Yk is a production and if 

is in all of FIRST (Y1) ... FIRST (Yk) then
FIRST(X) = {FIRST(Y1)  FIRST(Y2)  FIRST(Y3)....  FIRST(Yk)}.

2. FOLLOW function :
i. FOLLOW(A) is defined as the set of terminal symbols that appear

immediately to the right of A.

ii. FOLLOW(A) = {a | S
*

  Aa  where  and  are some grammar
symbols may be terminal or non-terminal}.

iii. The rules for computing FOLLOW function are as follows :
a.For the start symbol S place $ in FOLLOW(S).
b.If there is a production A  B  then everything in FIRST()
without  is to be placed in FOLLOW(B).
c.If there is a production A  B  or A  B and FIRST(B)
contain  then FOLLOW(B) = FOLLOW(A). That means everything
in FOLLOW(A) is in FOLLOW(B).

c. Perform shift reduce parsing for the given input strings
using the grammar

S  (L)|a
L  L, S|S

i. (a, (a, a))
ii. (a, a)

Ans.
Stack contents Input string Actions

$ (a, (a, a))$ Shift (
$((a, (a, a))$ Shift a

$(a ,(a, a))$ Reduce S  a
$(S ,(a, a))$ Reduce L  S
$(L ,(a, a))$ Shift)
$(L, (a, a))$ Shift (

$(L, (a, a))$ Shift a
$(L, (a ,a))$ Reduce S  a
$(L, (S ,a))$ Reduce L  S
$(L, (L ,a))$ Shift,
$(L, (L, a))$ Shift a

$(L, (L, a))$ Reduce S  a
$(L, (L, S))$ Reduce L  L, S

$(L, (L))$ Shift)
$(L, (L))$ Reduce S  (L)
(L, S) Reduce L  L, S

(L) Shift)
$(L) $ Reduce S  (L)
$S $ Accept

SP–8 C (CS/IT-Sem-5)Solved Paper (2018-19)

ii.

Stack contents Input string Actions

$ (a, a)$ Shift (
(a, a) Shift a

(a , a) Reduce S  a
(S , a) Reduce L  S
(L , a) Shift ,
(L, a) Shift a

(L, a) Reduce S  a
(L, S) Reduce L  L, S

(L) Shift)
$(L) $ Reduce S  L
$S $ Accept

d. What is global data flow analysis ? How does it use in code
optimization ?

Ans. Global data flow analysis : Global data flow analysis :
1. Global data flow analysis collects the information about the entire

program and distributed it to each block in the flow graph.
2. Data flow can be collected in various block by setting up and solving

a system of equation.
3. A data flow equation is given as :

OUT(s) = {IN(s) – KILL(s)}  GEN(s)
OUT(s) : Definitions that reach exist of block B.
GEN(s) : Definitions within block B that reach the end of B.
IN(s) : Definitions that reaches entry of block B.
KILL(s) : Definitions that never reaches the end of block B.
How it is used in code optimization :

1. Data flow analysis is a process in which the values are computed
using data flow properties.

2. In this analysis, the analysis is made on data flow.
3. A program’s Control Flow Graph (CFG) is used to determine those

parts of a program to which a particular value assigned to a variable
might propagate.

4. A simple way to perform data flow analysis of programs is to set up
data flow equations for each node of the control flow graph and
solve them by repeatedly calculating the output from the input
locally at each node until the whole system stabilizes, i.e., it reaches
a fix point.

5. Reaching definitions is used by data flow analysis in code
optimization.
Reaching definitions :

1. A definition D reaches at point p if there is a path from D to p along
which D is not killed.

SP–9 C (CS/IT-Sem-5)Compiler Design

d1 : y := 2

d2 : x := y + 2

B1

B2

2. A definition D of variable x is killed when there is a redefinition
of x.

d1 : y := 2

d2 : y := y + 2

B1

B2

d3 : x := y + 2 B3

3. The definition d1 is said to a reaching definition for block B2. But
the definition d1 is not a reaching definition in block B3, because it
is killed by definition d2 in block B2.

e. Construct LR(0) parsing table for the following grammar
S  cB|ccA
A  cA|a
B  ccB|b

Ans. The augmented grammar is :
S  S
S  cB|ccA
A  cA|a
B  ccB|b

The canonical collection of LR (0) items are :
I0 : S • S

S  • cB|• ccA
A  • cA|• a
B  • ccB|• b
I1 = GOTO (I0, S)
I1 : SS •

I2 = GOTO (I0, c)
I2 : S  c • B|c • cA

A  c•A
B  c•cB
A  •cA|•a
B  •ccB|•b

I3 = GOTO (I0, a)
I3 : A  a •

I4 = GOTO (I0, b)
I4 : B  b •

SP–10 C (CS/IT-Sem-5)Solved Paper (2018-19)

I5 = GOTO (I2, B)
I5 : S  cB •

I6 = GOTO (I2, A)
I6 : A  cA •

I7 = GOTO (I2, c)
I7 : S  cc • A

B  cc • B
A  c • A
B  c • cB
A  • cA/ • a
B  • ccB/ • b

I8 = GOTO (I7, A)
I8 : S  ccA •

A  cA •
I9 = GOTO (I7, B)

I9 : B ccB •
I10 = GOTO (I7, c)

I10 : B  cc • B
A  c • A
B  c • cB
B  • ccB| • b
A  • cA| • a

I11 = GOTO (I10, A)
I11 : A  cA •

DFA for set of items :

I0 I1 I6

I8I2 I5

I9I3 I4 I7

I10 I11

S
c

ba

a
a

b
b

A

B
c

A

B

A
c

ca

b

Fig. 2.
Let us numbered the production rules in the grammar as
1. S  cB
2. S  ccA
3. A  cA
4. A  a
5. B  ccB
6. B  b

SP–11 C (CS/IT-Sem-5)Compiler Design

States a b c $ A B S

Action GOTO

I0 S3 S4 S2 1

I1 Accept

I2 S3 S4 S7 6 5

I3 r4 r4 r4 r4

I4 r6 r6 r6 r6

I5 r1 r1 r1 r1

I6 r3 r3 r3 r3

I7 S3 S4 S10 8 9

I8 r r2 3, r r2 3, r r2 3, r r2 3,

I9 r5 r5 r5 r5

I10 S3 S4 S10 11

I11 r3 r3 r3 r3

SECTION-C

3. Attempt any one part of the following : (7 × 1 = 7)
a. Convert following NFA to equivalent DFA and hence

minimize the number of states in the DFA.

q2q1q0



b
a. c

b. c

. c

Fig. 3.
Ans. Transition table for -NFA :

/ a b c 

q0  q1 q2 {q1, q2}

q1 q0 q2 {q0, q2} 

q2    

-closure of {q0} = {q0, q1, q2}

SP–12 C (CS/IT-Sem-5)Solved Paper (2018-19)

-closure of {q1} = {q1}

-closure of {q2} = {q2}

Transition table for NFA :

/ a b c

{q0, q1, q2} {q0, q1, q2} {q1, q2} {q0, q1, q2}

{q1, q2} {q0, q1, q2} {q2} {q0, q1, q2}

{q2}   

Let {q0, q1, q2} = A

{q1, q2} = B

{q2} = C

Transition table for NFA :
/ a b c

A A B A

B A C A

C   

Transition table for DFA :

/ a b c

A A B A

B A C A

C   

So, DFA is given by

A B C

D

a, c c

b
b
a a, b, c

a, b, c

Dead state

Fig. 4.

b. Explain the various parameter passing mechanisms of a
high level language.

SP–13 C (CS/IT-Sem-5)Compiler Design

Ans.
i. Call by name :
1. In call by name, the actual parameters are substituted for formals

in all the places where formals occur in the procedure.
2. It is also referred as lazy evaluation because evaluation is done on

parameters only when needed.
For example :
main (){
int n1=10;n2=20;
printf(“n1: %d, n2: %d\n”, n1, n2);
swap(n1,n2);
printf(“n1: %d, n2: %d\n”, n1, n2); }
swap(int c ,int d){
int t;
t=c;
c=d;
d=t;
printf(“n1: %d, n2: %d\n”, n1, n2);
}
Output : 10 20

20 10
20 10

ii. Call by reference :
1. In call by reference, the location (address) of actual arguments is

passed to formal arguments of the called function. This means by
accessing the addresses of actual arguments we can alter them
within the called function.

2. In call by reference, alteration to actual arguments is possible within
called function; therefore the code must handle arguments carefully
else we get unexpected results.
For example :
#include <stdio.h>
void swapByReference(int*, int*); /* Prototype */
int main() /* Main function */
{
int n1 = 10; n2 = 20;
/* actual arguments will be altered */
swapByReference(&n1, &n2);
printf(“n1: %d, n2: %d\n”, n1, n2);
}
void swapByReference(int *a, int *b)
{
int t;
t = *a; *a = *b; *b = t;
}
Output : n1: 20, n2: 10

SP–14 C (CS/IT-Sem-5)Solved Paper (2018-19)

4. Attempt any one part of the following : (7 × 1 = 7)
a. How would you represent the following equation using

DAG ?
a = b * – c + b * – c

Ans. Code representation using DAG of equation : a = b * – c + b *– c

c

–
t1

t c1 = –
Step 1 :

b –

c

Step 2 : t2
t b t2 1= *

*

b –

c

Step 3 :

t3

t t t3 2 2= +

+

*

+

b

a

–

=Step 4 :
t a4 =

c

*

t4

b. Distinguish between static scope and dynamic scope. Briefly
explain access to non-local names in static scope.

SP–15 C (CS/IT-Sem-5)Compiler Design

1. The binding of name
occurrences to declarations
is done statistically at
compile time.

2. The structure of the
program defines the
binding of variables.

3. A free variable in a
procedure gets its value
from the environment in
which the procedure is
defined.

The binding of name occurrences
to declarations is done dynamically
at run-time.

The binding of variables is defined
by the flow of control at the run
time.

A free variable gets its value from
where the procedure is called.

Ans. Difference :

S. No. Lexical scope Dynamic scope

Access to non-local names in static scope :
1. Static chain is the mechanism to implement non-local names

(variable) access in static scope.
2. A static chain is a chain of static links that connects certain activation

record instances in the stack.
3. The static link, static scope pointer, in an activation record instance

for subprogram A points to one of the activation record instances of
A’s static parent.

4. When a subroutine at nesting level j has a reference to an object
declared in a static parent at the surrounding scope nested at level
k, then j-k static links forms a static chain that is traversed to get to
the frame containing the object.

5. The compiler generates code to make these traversals over frames
to reach non-local names.
For example : Subroutine A is at nesting level 1 and C at nesting
level 3. When C accesses an object of A, 2 static links are traversed
to get to A’s frame that contains that object

SP–16 C (CS/IT-Sem-5)Solved Paper (2018-19)

Nesting

A

B

C

D

E
Calls

A calls E
E calls B
B calls D
D calls C

Static frames

fp

C
static link

D
static link

B
static link

E
static link

A

5. Attempt any one part of the following : (7 × 1 = 7)
a. Write short notes on the following with the help of example :
i. Loop unrolling

ii. Loop jamming
iii. Dominators
iv. Viable prefix

Ans.
i. Loop unrolling : In this method, the number of jumps and tests

can be reduced by writing the code two times.
For example :

int i = 1;
while(i<=100)
{

a[i]=b[i];
i++;

}

int i = 1;
while(i<=100)
{

a[i]=b[i];
i++;
a[i]=b[i];
i++ ;

}

Can be written as

ii. Loop fusion or loop jamming : In loop fusion method, several
loops are merged to one loop.
For example :

for i:=1 to n do
for j:=1 to m do
a[i,j]:=10

for i:=1 to n*m do
a[i]:=10

Can be written as

iii. Dominators :
a. In control flow graphs, a node d dominates a node n if every path

from the entry node to n must go through d. This is denoted as d
dom n.

b. By definition, every node dominates itself.
c. A node d strictly dominates a node n if d dominates n and d is not

equal to n.

SP–17 C (CS/IT-Sem-5)Compiler Design

d. The immediate dominator (or idom) of a node n is the unique node
that strictly dominates n but does not strictly dominate any other
node that strictly dominates n. Every node, except the entry node,
has an immediate dominator.

e. A dominator tree is a tree where each node’s children are those
nodes it immediately dominates. Because the immediate dominator
is unique, it is a tree. The start node is the root of the tree.
For example : In the flow graph,

1

3

4

7

8

2

5

9 10

6

1

4

2

5

3

7

6

8

9 10

() Flow graph a

 () Dominator treeb

Fig. 5.
Initial Node, Node1 dominates every Node.
Node 2 dominates itself. Node 3 dominates all but 1 and 2. Node 4
dominates all but 1,2 and 3.
Node 5 and 6 dominates only themselves, since flow of control can
skip around either by go in through the other. Node 7 dominates 7,
8, 9 and 10. Node 8 dominates 8, 9 and 10.
Node 9 and 10 dominates only themselves.

iv. Viable prefix : Viable prefixes are the prefixes of right sentential
forms that can appear on the stack of a shift-reduce parser.
For example :
Let : S  x1x2x3x4
A  x1 x2
Let w = x1x2x3
SLR parse trace :

STACK INPUT

$ x1x2x3
$ x1 x2x3
$ x1x2 x3
$A x3
$AX3 $
...

SP–18 C (CS/IT-Sem-5)Solved Paper (2018-19)

As we see, x1x2x3 will never appear on the stack. So, it is not a viable
prefix.

b. Draw the format of activation record in stack allocation
and explain each field in it.

Ans.
1. Activation record is used to manage the information needed by a

single execution of a procedure.
2. An activation record is pushed into the stack when a procedure is

called and it is popped when the control returns to the caller function.
Format of activation records in stack allocation :

Return value

Actual parameters

Control link

Access link

Saved machine status

Local data

Temporaries

Fields of activation record are :
1. Return value : It is used by calling procedure to return a value to

calling procedure.
2. Actual parameter : It is used by calling procedures to supply

parameters to the called procedures.
3. Control link : It points to activation record of the caller.
4. Access link : It is used to refer to non-local data held in other

activation records.
5. Saved machine status : It holds the information about status of

machine before the procedure is called.
6. Local data : It holds the data that is local to the execution of the

procedure.
7. Temporaries : It stores the value that arises in the evaluation of

an expression.

6. Attempt any one part of the following : (7 × 1 = 7)
a. Write down the translation procedure for control statement

and switch statement.
Ans. Translation procedure for if-then and if-then-else

statement :
1. Consider a grammar for if-else

S  if E then S1|if E then S1 else S2
2. Syntax directed translation scheme for if-then is given as follows :

SP–19 C (CS/IT-Sem-5)Compiler Design

S if E then S1
E.true := new_label()
E.false := S.next
S1.next := S.next
S.code := E.code || gen_code(E.true ‘:’) || S1.code

3. In the given translation scheme || is used to concatenate the strings.
4. The function gen_code is used to evaluate the non-quoted

arguments passed to it and to concatenate complete string.
5. The S.code is the important rule which ultimately generates the

three address code.
S  if E then S1 else S2

E.true := new_label()
E.false := new_label()
S1.next := S.next
S2.next := S.next
S.code := E.code || gen_code(E.true ‘:’) ||

S1.code := gen_code(‘goto’, S.next) ||
gen_code(E.false ‘:’) || S2.code
For example : Consider the statement if a < b then a = a + 5 else
a = a + 7

if a<b E.true

E.true:
E.false:

a := a+5
a := a+7

S1

The three address code for if-else is
100 : if a < b goto 102
101 : goto 103
102 : L1 a := a+5 /*E.true*/
103 : L2 a := a+7
Hence, E.code is “if a < b” L1 denotes E.true and L2 denotes E.false
is shown by jumping to line 103 (i.e., S.next).
Translation procedure for while-do statement :

Production Semantic rules

S  while E do S1 S.begin : = newlable
E.true : = newlable
E.false : = S. next
S1.next : = S.begin
S.code = gen(S.begin ‘:’)||

E.code ||
gen(E.true ‘:’)||S1.code||
gen(‘goto’S.being)

SP–20 C (CS/IT-Sem-5)Solved Paper (2018-19)

Switch E
{

case v1 : s1
case v2 : s2

...
case vn–1 : sn–1
default : sn

}

Evaluate E into t such that t = E
goto check
L1 : code for s1

goto last
L2 : code for s2

goto last

Ln : code for sn
goto last

check : if t = v1 goto L1
if t = v2 goto L2

...
if t = vn–1 goto Ln–1
goto Ln

last

Translation procedure for do-while statement :

Production Semantic rules

S  do S1 while E S.begin : = newlable
E.true : = S.begin
E.false : = S.next

S.code = S1.code||E.code||
gen(E.true ‘:’)||
gen(‘goto’S.being)

Switch statement :

Production rule Semantic action

switch expression
{
case value : statement
case value : statement

...
case value : statement
default : statement
}
Example :
switch(ch)
{

case 1 : c = a + b;
break;
case 2 : c = a – b;
break;

SP–21 C (CS/IT-Sem-5)Compiler Design

}
The three address code can be
if ch = 1 goto L1

if ch = 2 goto L2

L1 : t1
 := a + b

c := t1

goto last
L2 : t2 := a – b

c := t2

goto last
last :

b. Define syntax directed translation. Construct an annotated
parse tree for the expression (4 * 7 + 1) * 2, using the simple desk
calculator grammar.

Ans.
1. Syntax directed definition/translation is a generalization of context

free grammar in which each grammar production X   is
associated with a set of semantic rules of the form a := f (b1, b2,
bk), where a is an attribute obtained from the function f.

2. Syntax directed translation is a kind of abstract specification.
3. It is done for static analysis of the language.
4. It allows subroutines or semantic actions to be attached to the

productions of a context free grammar. These subroutines
generate intermediate code when called at appropriate time by a
parser for that grammar.

5. The syntax directed translation is partitioned into two subsets
called the synthesized and inherited attributes of grammar.

Lexical analysis


Token stream


Syntax analysis


Parse tree


Semantic analysis


Dependency graph


Evaluation order for semantic rules


Translation of constructs

Syntax directed
translation

Fig. 6.

SP–22 C (CS/IT-Sem-5)Solved Paper (2018-19)

Annotated tree for the expression (4*7 + 1)*2 :
L.val = 58

*

*

E.val = 29 F.val = 2

id.lexval = 2E.val = 29

T.val = 4

id.lexval = 7

F.val = 7

id.lexval = 4

E

T

E)(

F T

T F

F

id

id id

T.val = 28 + F.val = 1

Fig. 7.

7. Attempt any one part of the following : (7 × 1 = 7)
a. Explain in detail the error recovery process in operator

precedence parsing method.
Ans. Error recovery in operator precedence parsing :

1. There are two points in the parsing process at which an operator-
precedence parser can discover syntactic error :
a. If no precedence relation holds between the terminal on top of

the stack and the current input.
b. If a handle has been found, but there is no production with this

handle as a right side.
2. The error checker does the following errors :

a. Missing operand
b. Missing operator
c. No expression between parentheses
d. These error diagnostic issued at handling of errors during

reduction.
3. During handling of shift/reduce errors, the diagnostic’s issues are :

a. Missing operand
b. Unbalanced right parenthesis
c. Missing right parenthesis
d. Missing operators

b. Explain what constitute a loop in flow graph and how will
you do loop optimizations in code optimization of a
compiler.

Ans. Following term constitute a loop in flow graph :
1. Dominators :

a. In control flow graphs, a node d dominates a node n if every
path from the entry node to n must go through d. This is
denoted as d dom n.

SP–23 C (CS/IT-Sem-5)Compiler Design

b. By definition, every node dominates itself.

c. A node d strictly dominates a node n if d dominates n and d is
not equal to n.

d. The immediate dominator (or idom) of a node n is the unique
node that strictly dominates n but does not strictly dominate
any other node that strictly dominates n. Every node, except
the entry node, has an immediate dominator.

e. A dominator tree is a tree where each node’s children are
those nodes it immediately dominates. Because the immediate
dominator is unique, it is a tree. The start node is the root of
the tree.

2. Natural loops :
a. The natural loop can be defined by a back edge n  d such

that there exists a collection of all the nodes that can reach
to n without going through d and at the same time d can also
be added to this collection.

b. Loop in a flow graph can be denoted by n  d such that d
dom n.

c. These edges are called back edges and for a loop there can
be more than one back edge.

d. If there is p  q then q is a head and p is a tail and head
dominates tail.

3. Pre-header :
a. The pre-header is a new block created such that successor

of this block is the header block.

b. All the computations that can be made before the header
block can be made before the pre-header block.

header header

Pre-header

B0 B0

Fig. 8. Pre-header.

SP–24 C (CS/IT-Sem-5)Solved Paper (2018-19)

4. Reducible flow graph :
a. A flow graph G is reducible graph if an only if we can partition

the edges into two disjointed groups i.e., forward edges and
backward edges.

b. These edges have following properties :

i. The forward edge forms an acyclic graph.

ii. The backward edges are such edges whose heads
dominate their tails.

c. The program structure in which there is exclusive use of if-
then, while-do or goto statements generates a flow graph
which is always reducible.

Loop optimization is a process of increasing execution time
and reducing the overhead associated with loops.

The loop optimization is carried out by following methods :
1. Code motion :

a. Code motion is a technique which moves the code outside
the loop.

b. If some expression in the loop whose result remains unchanged
even after executing the loop for several times, then such
an expression should be placed just before the loop (i.e.,
outside the loop).

c. Code motion is done to reduce the execution time of the
program.

2. Induction variables :
a. A variable x is called an induction variable of loop L if the

value of variable gets changed every time.

b. It is either decremented or incremented by some constant.

3. Reduction in strength :
a. In strength reduction technique the higher strength operators

can be replaced by lower strength operators.

b. The strength of certain operator is higher than other.

c. The strength reduction is not applied to the floating point
expressions because it may yield different results.

4. Loop invariant method : In loop invariant method, the
computation inside the loop is avoided and thereby the computation
overhead on compiler is avoided.

5. Loop unrolling : In this method, the number of jumps and tests
can be reduced by writing the code two times.

SP–25 C (CS/IT-Sem-5)Compiler Design

For example :

int i = 1;
while(i<=100)
{

a[i]=b[i];
i++;

}

int i = 1;
while(i<=100)
{

a[i]=b[i];
i++;
a[i]=b[i];
i++ ;

}

Can be written as

6. Loop fusion or loop jamming : In loop fusion method, several
loops are merged to one loop.
For example :

for i:=1 to n do
for j:=1 to m do
a[i,j]:=10

for i:=1 to n*m do
a[i]:=10

Can be written as



	cc07d798a457acda2403e7530dae28d2ce894c62a688f8975ee24664a30aa98f.pdf
	cc07d798a457acda2403e7530dae28d2ce894c62a688f8975ee24664a30aa98f.pdf

